[1] Brendle, S. and Schoen, R., Curvature, Sphere theorems, and the Ricci flow, Bull. Amer. Math.
Soc., 48 (1) (2011), 1-32.
[2] Meeks, W. and Perez, J., The classical theory of minimal surfaces, Bull. Amer. Math. Soc.,
48 (3) (2011), 325-408.
[3] Newlander, A. and Nirenberg, L., Complex Analytic Coordinates in Almost Complex Mani-
folds,Ann. of Math. (2), 65 (3) (1957), 391-404.
[4] Saric, B., The Fourier series of one class of functions with discontinuities, Doctoral
dissertation defended on 20th of October 2009 at the University of Novi Sad, Faculty of Science,
Department of Mathematics and Informathics.
[5] Schoen, R., Simon, L. and Yau, S. T., Curvature estimates for minimal hypersurfaces. Acta
Math., 134 (3-4) (1975), 275–288.
Year 2013,
Volume: 6 Issue: 2, 32 - 38, 30.10.2013
[1] Brendle, S. and Schoen, R., Curvature, Sphere theorems, and the Ricci flow, Bull. Amer. Math.
Soc., 48 (1) (2011), 1-32.
[2] Meeks, W. and Perez, J., The classical theory of minimal surfaces, Bull. Amer. Math. Soc.,
48 (3) (2011), 325-408.
[3] Newlander, A. and Nirenberg, L., Complex Analytic Coordinates in Almost Complex Mani-
folds,Ann. of Math. (2), 65 (3) (1957), 391-404.
[4] Saric, B., The Fourier series of one class of functions with discontinuities, Doctoral
dissertation defended on 20th of October 2009 at the University of Novi Sad, Faculty of Science,
Department of Mathematics and Informathics.
[5] Schoen, R., Simon, L. and Yau, S. T., Curvature estimates for minimal hypersurfaces. Acta
Math., 134 (3-4) (1975), 275–288.
Sarıć, B. (2013). ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES. International Electronic Journal of Geometry, 6(2), 32-38.
AMA
Sarıć B. ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES. Int. Electron. J. Geom. October 2013;6(2):32-38.
Chicago
Sarıć, Branko. “ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES”. International Electronic Journal of Geometry 6, no. 2 (October 2013): 32-38.
EndNote
Sarıć B (October 1, 2013) ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES. International Electronic Journal of Geometry 6 2 32–38.
IEEE
B. Sarıć, “ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES”, Int. Electron. J. Geom., vol. 6, no. 2, pp. 32–38, 2013.
ISNAD
Sarıć, Branko. “ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES”. International Electronic Journal of Geometry 6/2 (October 2013), 32-38.
JAMA
Sarıć B. ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES. Int. Electron. J. Geom. 2013;6:32–38.
MLA
Sarıć, Branko. “ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES”. International Electronic Journal of Geometry, vol. 6, no. 2, 2013, pp. 32-38.
Vancouver
Sarıć B. ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC HERMETIAN SUBMANIFOLD OF REALiREAL VECTOR SPACES. Int. Electron. J. Geom. 2013;6(2):32-8.