[1] Bishop, L.R., There is more than one way to frame a curve. Amer. Math. Monthly, (1975),Vol-
ume 82, Issue 3, 246-251.
[2] Bukcu, B. and Karacan M.K., Special Bishop Motion and Bishop Darboux Rotation Axis of space
curve. Journal of Dynamical Systems and Geometric Theories. (2008), 6(1), 27-34.
[3] Catalan, E., Sur les surfaces réglées dont l’aire est un minimum. J. Math. Pure. Appl. ,
(1842), 7, 203-211.
[4] do Carmo, M. P., Differential Geometry of Curves and Surfaces. Prentice-Hall, ISBN 0-13-
212589-7, 1976.
[5] do Carmo, M. P., The Helicoid.” §3.5B in Mathematical Models from the Collections of
Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, (1986), pp. 44-45.
[6] Eisenhart, Luther P., A Treatise on the Differential Geometry of Curves and Surfaces. Dover,
ISBN 0-486-43820-1, 2004.
[7] Graves, L. K., Codimension one isometric immersions between Lorentz spaces. Trans. A.M.S., 252
(1979), 367–392.
[8] Hanson, A. J., Hui Ma, Parallel Transport Approach To Curve Framing. Indiana
University,Techreports- TR425, January 11(1995).
[9] Hanson, A. J., Hui Ma, Quaternion Frame Approach to Streamline Visualization. Ieee Trans-
actions On Visualization And Computer Graphics, Vol. I , No. 2, June 1995.
[10] Körpınar T. and Ba¸s S., On Characterization Of B-Focal curves In E3. Bol. Soc. Paran. Mat.
(2013), 31 (1), 175-178.
[11] Shifrin T., Differential Geometry: A First Course in Curves and Surfaces. University of
Georgia, Preliminary Version, 2008.
[12] Springerlink, Encyclopedia of Mathematics. Springer-Verlag, Berlin Heidelberg New York,
2002.
ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE
Year 2013,
Volume: 6 Issue: 2, 110 - 117, 30.10.2013
[1] Bishop, L.R., There is more than one way to frame a curve. Amer. Math. Monthly, (1975),Vol-
ume 82, Issue 3, 246-251.
[2] Bukcu, B. and Karacan M.K., Special Bishop Motion and Bishop Darboux Rotation Axis of space
curve. Journal of Dynamical Systems and Geometric Theories. (2008), 6(1), 27-34.
[3] Catalan, E., Sur les surfaces réglées dont l’aire est un minimum. J. Math. Pure. Appl. ,
(1842), 7, 203-211.
[4] do Carmo, M. P., Differential Geometry of Curves and Surfaces. Prentice-Hall, ISBN 0-13-
212589-7, 1976.
[5] do Carmo, M. P., The Helicoid.” §3.5B in Mathematical Models from the Collections of
Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, (1986), pp. 44-45.
[6] Eisenhart, Luther P., A Treatise on the Differential Geometry of Curves and Surfaces. Dover,
ISBN 0-486-43820-1, 2004.
[7] Graves, L. K., Codimension one isometric immersions between Lorentz spaces. Trans. A.M.S., 252
(1979), 367–392.
[8] Hanson, A. J., Hui Ma, Parallel Transport Approach To Curve Framing. Indiana
University,Techreports- TR425, January 11(1995).
[9] Hanson, A. J., Hui Ma, Quaternion Frame Approach to Streamline Visualization. Ieee Trans-
actions On Visualization And Computer Graphics, Vol. I , No. 2, June 1995.
[10] Körpınar T. and Ba¸s S., On Characterization Of B-Focal curves In E3. Bol. Soc. Paran. Mat.
(2013), 31 (1), 175-178.
[11] Shifrin T., Differential Geometry: A First Course in Curves and Surfaces. University of
Georgia, Preliminary Version, 2008.
[12] Springerlink, Encyclopedia of Mathematics. Springer-Verlag, Berlin Heidelberg New York,
2002.
Kılıçoğlu, Ş., & Hacısalihoğlu, H. H. (2013). ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE. International Electronic Journal of Geometry, 6(2), 110-117.
AMA
Kılıçoğlu Ş, Hacısalihoğlu HH. ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE. Int. Electron. J. Geom. October 2013;6(2):110-117.
Chicago
Kılıçoğlu, Şeyda, and H. Hilmi Hacısalihoğlu. “ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE”. International Electronic Journal of Geometry 6, no. 2 (October 2013): 110-17.
EndNote
Kılıçoğlu Ş, Hacısalihoğlu HH (October 1, 2013) ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE. International Electronic Journal of Geometry 6 2 110–117.
IEEE
Ş. Kılıçoğlu and H. H. Hacısalihoğlu, “ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE”, Int. Electron. J. Geom., vol. 6, no. 2, pp. 110–117, 2013.
ISNAD
Kılıçoğlu, Şeyda - Hacısalihoğlu, H. Hilmi. “ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE”. International Electronic Journal of Geometry 6/2 (October 2013), 110-117.
JAMA
Kılıçoğlu Ş, Hacısalihoğlu HH. ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE. Int. Electron. J. Geom. 2013;6:110–117.
MLA
Kılıçoğlu, Şeyda and H. Hilmi Hacısalihoğlu. “ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE”. International Electronic Journal of Geometry, vol. 6, no. 2, 2013, pp. 110-7.
Vancouver
Kılıçoğlu Ş, Hacısalihoğlu HH. ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3-SPACE. Int. Electron. J. Geom. 2013;6(2):110-7.