Research Article
BibTex RIS Cite

A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n

Year 2013, Volume: 6 Issue: 2, 118 - 124, 30.10.2013

Abstract


References

  • [1] Chirikjian, G. S. and Burdick, J., A modal approach to hyper-redundant manipulator kine- matics, IEEE Trans. Robot. Autom., 10(1994), 343–354.
  • [2] Chirikjian, G. S., Closed-form primitives for generating volume preserving deformations, ASME J.Mechanical Design, 117(1995), 347–354.
  • [3] Desbrun, M., Cani-Gascuel, M.-P., Active implicit surface for animation, in: Proc. Graphics Interface Canadian Inf. Process. Soc., 143–150 (1998).
  • [4] Gage, M., Hamilton, R. S., The heat equation shrinking convex plane curves, J. Differential Geom., 23(1986), 69–96.
  • [5] Gluck, H., Higher curvatures of curves in Euclidean space, Amer. Math. Month., 73(1966), 699-704.
  • [6] Grayson, M., The heat equation shrinks embedded plane curves to round points, J. Differen- tial Geom., 26(1987), 285–314.
  • [7] Gürbüzü, N., Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math.Sciences, 4(2009), 1599-1604.
  • [8] Hacisalihoğlu, H. H., Differential Geometry, University of I˙n¨onu¨ Press, Malatya, 1983.
  • [9] Kass, M., Witkin, A., Terzopoulos, D., Snakes: active contour models, in: Proc. 1st Int.Conference on Computer Vision, 259–268 (1987).
  • [10] Kwon, D. Y., Park, F. C., Chi, D. P., Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18(2005) 1156-1162.
  • [11] Kwon, D. Y., Park, F. C., Evolution of inelastic plane curves, Appl. Math. Lett., 12(1999), pp.115-119.
  • [12] Lu, H. Q., Todhunter, J. S., Sze, T. W., Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst., 56(1993), 265– 285.
  • [13] Öğrenmiş, A. O., Yeneroğlu, M., Inextensible curves in the Galilean Space, International Journal of the Physical Sciences, 5(2010), 1424-1427.
  • [14] Yildiz, O. G., Ersoy, S., Masal, M., A Note on Inextensible Flows of Curves on Oriented e, arXiv:1106.2012v1.
Year 2013, Volume: 6 Issue: 2, 118 - 124, 30.10.2013

Abstract

References

  • [1] Chirikjian, G. S. and Burdick, J., A modal approach to hyper-redundant manipulator kine- matics, IEEE Trans. Robot. Autom., 10(1994), 343–354.
  • [2] Chirikjian, G. S., Closed-form primitives for generating volume preserving deformations, ASME J.Mechanical Design, 117(1995), 347–354.
  • [3] Desbrun, M., Cani-Gascuel, M.-P., Active implicit surface for animation, in: Proc. Graphics Interface Canadian Inf. Process. Soc., 143–150 (1998).
  • [4] Gage, M., Hamilton, R. S., The heat equation shrinking convex plane curves, J. Differential Geom., 23(1986), 69–96.
  • [5] Gluck, H., Higher curvatures of curves in Euclidean space, Amer. Math. Month., 73(1966), 699-704.
  • [6] Grayson, M., The heat equation shrinks embedded plane curves to round points, J. Differen- tial Geom., 26(1987), 285–314.
  • [7] Gürbüzü, N., Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math.Sciences, 4(2009), 1599-1604.
  • [8] Hacisalihoğlu, H. H., Differential Geometry, University of I˙n¨onu¨ Press, Malatya, 1983.
  • [9] Kass, M., Witkin, A., Terzopoulos, D., Snakes: active contour models, in: Proc. 1st Int.Conference on Computer Vision, 259–268 (1987).
  • [10] Kwon, D. Y., Park, F. C., Chi, D. P., Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18(2005) 1156-1162.
  • [11] Kwon, D. Y., Park, F. C., Evolution of inelastic plane curves, Appl. Math. Lett., 12(1999), pp.115-119.
  • [12] Lu, H. Q., Todhunter, J. S., Sze, T. W., Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst., 56(1993), 265– 285.
  • [13] Öğrenmiş, A. O., Yeneroğlu, M., Inextensible curves in the Galilean Space, International Journal of the Physical Sciences, 5(2010), 1424-1427.
  • [14] Yildiz, O. G., Ersoy, S., Masal, M., A Note on Inextensible Flows of Curves on Oriented e, arXiv:1106.2012v1.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Önder Gökmen Yıldız

Murat Tosun

Sidika Özkaldi Karakuş

Publication Date October 30, 2013
Published in Issue Year 2013 Volume: 6 Issue: 2

Cite

APA Yıldız, Ö. G., Tosun, M., & Karakuş, S. Ö. (2013). A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. International Electronic Journal of Geometry, 6(2), 118-124.
AMA Yıldız ÖG, Tosun M, Karakuş SÖ. A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. Int. Electron. J. Geom. October 2013;6(2):118-124.
Chicago Yıldız, Önder Gökmen, Murat Tosun, and Sidika Özkaldi Karakuş. “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”. International Electronic Journal of Geometry 6, no. 2 (October 2013): 118-24.
EndNote Yıldız ÖG, Tosun M, Karakuş SÖ (October 1, 2013) A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. International Electronic Journal of Geometry 6 2 118–124.
IEEE Ö. G. Yıldız, M. Tosun, and S. Ö. Karakuş, “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”, Int. Electron. J. Geom., vol. 6, no. 2, pp. 118–124, 2013.
ISNAD Yıldız, Önder Gökmen et al. “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”. International Electronic Journal of Geometry 6/2 (October 2013), 118-124.
JAMA Yıldız ÖG, Tosun M, Karakuş SÖ. A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. Int. Electron. J. Geom. 2013;6:118–124.
MLA Yıldız, Önder Gökmen et al. “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”. International Electronic Journal of Geometry, vol. 6, no. 2, 2013, pp. 118-24.
Vancouver Yıldız ÖG, Tosun M, Karakuş SÖ. A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. Int. Electron. J. Geom. 2013;6(2):118-24.