[1] Abbassi M.T.K., Calvaruso G. and Perrone D., Harmonic sections of tangent bundles
equipped with Riemannian g-natural metrics, Quarterly Journal of Mathematics - QUART J MATH , vol.
61, no. 3, 2010
[2] Aghasi ., Dodson C.T.J., Galanis G.N. and Suri A., Infinite dimensional second order differ-
ential equations via T 2M . Nonlinear Analysis-theory Methods and Applications, vol. 67, no. 10
(2007), pp. 2829-2838.
[3] Antonelli P.L., and Anastasiei M., The Differential Geometry of Lagrangians which Generate
Sprays, Dordrecht: Kluwer, 1996.
[4] Antonelli P.L., Ingarden R. S., and Matsumoto M. S., The Theory of Sprays and Finsler Spaces
with Applications in Physics and Biology , Dordrecht: Kluwer, 1993.
[5] Boeckx E. and Vanhecke L., Harmonic and minimal vector fields on tangent and unit tangent
bundles, Differential Geometry and its Applications Volume 13, Issue 1, July 2000, Pages 77-93.
[6] Calvaruso G., Naturally Harmonic Vector Fields, Note di Matematica, Note Mat. 1(2008), suppl.
n. 1, 107-130
[7] Cheeger J. and Gromoll D., On the structure of complete manifolds of nonnegative curvature,
Ann. of Math. 96, 413-443, (1972).
[8] Djaa M., Gancarzewicz J., The geometry of tangent bundles of order r, Boletin Academia ,
Galega de Ciencias ,Espagne, 4 (1985), 147–165
[9] Djaa N.E.H., Ouakkas S. , M. Djaa, Harmonic sections on the tangent bundle of order two.
Annales Mathematicae et Informaticae 38( 2011) pp 15-25. 1.
[10] Djaa N.E.H., Boulal A. and Zagane A., Generalized warped product manifolds and Bihar- monic
maps, Acta Math. Univ. Comenianae; in press, to appear (2012).
[11] Dodson C.T.J. and Galanis G.N., Second order tangent bundles of infinite dimensional man-
ifolds, J. Geom. Phys., 52 (2004), pp. 127136.
[12] Eells J., Sampson J.H., Harmonic mappings of Riemannian manifolds. Amer. J. Maths.
86(1964).
[13] Ishihara T., Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23-27.
[1] Abbassi M.T.K., Calvaruso G. and Perrone D., Harmonic sections of tangent bundles
equipped with Riemannian g-natural metrics, Quarterly Journal of Mathematics - QUART J MATH , vol.
61, no. 3, 2010
[2] Aghasi ., Dodson C.T.J., Galanis G.N. and Suri A., Infinite dimensional second order differ-
ential equations via T 2M . Nonlinear Analysis-theory Methods and Applications, vol. 67, no. 10
(2007), pp. 2829-2838.
[3] Antonelli P.L., and Anastasiei M., The Differential Geometry of Lagrangians which Generate
Sprays, Dordrecht: Kluwer, 1996.
[4] Antonelli P.L., Ingarden R. S., and Matsumoto M. S., The Theory of Sprays and Finsler Spaces
with Applications in Physics and Biology , Dordrecht: Kluwer, 1993.
[5] Boeckx E. and Vanhecke L., Harmonic and minimal vector fields on tangent and unit tangent
bundles, Differential Geometry and its Applications Volume 13, Issue 1, July 2000, Pages 77-93.
[6] Calvaruso G., Naturally Harmonic Vector Fields, Note di Matematica, Note Mat. 1(2008), suppl.
n. 1, 107-130
[7] Cheeger J. and Gromoll D., On the structure of complete manifolds of nonnegative curvature,
Ann. of Math. 96, 413-443, (1972).
[8] Djaa M., Gancarzewicz J., The geometry of tangent bundles of order r, Boletin Academia ,
Galega de Ciencias ,Espagne, 4 (1985), 147–165
[9] Djaa N.E.H., Ouakkas S. , M. Djaa, Harmonic sections on the tangent bundle of order two.
Annales Mathematicae et Informaticae 38( 2011) pp 15-25. 1.
[10] Djaa N.E.H., Boulal A. and Zagane A., Generalized warped product manifolds and Bihar- monic
maps, Acta Math. Univ. Comenianae; in press, to appear (2012).
[11] Dodson C.T.J. and Galanis G.N., Second order tangent bundles of infinite dimensional man-
ifolds, J. Geom. Phys., 52 (2004), pp. 127136.
[12] Eells J., Sampson J.H., Harmonic mappings of Riemannian manifolds. Amer. J. Maths.
86(1964).
[13] Ishihara T., Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23-27.
Mustapha, D., Djaa, N. E., & Nasrı, R. (2013). NATURAL METRICS ON T2M AND HARMONICITY. International Electronic Journal of Geometry, 6(1), 100-111.
AMA
Mustapha D, Djaa NE, Nasrı R. NATURAL METRICS ON T2M AND HARMONICITY. Int. Electron. J. Geom. Nisan 2013;6(1):100-111.
Chicago
Mustapha, Djaa, Nour Elhouda Djaa, ve Rafik Nasrı. “NATURAL METRICS ON T2M AND HARMONICITY”. International Electronic Journal of Geometry 6, sy. 1 (Nisan 2013): 100-111.
EndNote
Mustapha D, Djaa NE, Nasrı R (01 Nisan 2013) NATURAL METRICS ON T2M AND HARMONICITY. International Electronic Journal of Geometry 6 1 100–111.
IEEE
D. Mustapha, N. E. Djaa, ve R. Nasrı, “NATURAL METRICS ON T2M AND HARMONICITY”, Int. Electron. J. Geom., c. 6, sy. 1, ss. 100–111, 2013.
ISNAD
Mustapha, Djaa vd. “NATURAL METRICS ON T2M AND HARMONICITY”. International Electronic Journal of Geometry 6/1 (Nisan 2013), 100-111.
JAMA
Mustapha D, Djaa NE, Nasrı R. NATURAL METRICS ON T2M AND HARMONICITY. Int. Electron. J. Geom. 2013;6:100–111.
MLA
Mustapha, Djaa vd. “NATURAL METRICS ON T2M AND HARMONICITY”. International Electronic Journal of Geometry, c. 6, sy. 1, 2013, ss. 100-11.
Vancouver
Mustapha D, Djaa NE, Nasrı R. NATURAL METRICS ON T2M AND HARMONICITY. Int. Electron. J. Geom. 2013;6(1):100-11.