Research Article
BibTex RIS Cite

g-NATURAL METRICS ON THE COTANGENT BUNDLE

Year 2013, Volume: 6 Issue: 1, 129 - 146, 30.04.2013

Abstract


References

  • [1] Abbassi M.T.K, Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M, g), Comment. Math.Univ. Carolin. 45 (4) (2004) 591596.
  • [2] Abbassi M.T.K., Sarih M. On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno), 41 (2005), no. 1, 71-92.
  • [3] Abbassi M.T.K., Sarih M. On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl., 22(2005), no. 1, 19-47.
  • [4] A˘gca F., Salimov A.A., Some notes concerning Cheeger-Gromoll metrics, Hacet. J. Math. Stat., (2012) (to appear).
  • [5] Cheeger J., Gromoll D., On the structure of complete manifolds of nonnegative curvature, Ann. of Math., 96, 413-443, (1972).
  • [6] Gudmundsson S., Kappos E., On the geometry of the tangent bundle with the Cheeger- Gromoll metric, Tokyo J. Math. 25, no.1, 75-83, (2002).
  • [7] Gudmundsson S., Kappos E., On the geometry of the tangent bundles, Expo. Math.20, no.1, 1-41, (2002).
  • [8] Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. I, Interscience Publish- ers, New York-London, (1963).
  • [9] Munteanu M. I., Cheeger Gromoll type metrics on the tangent bundle. Sci. Ann. Univ. Agric. Sci. Vet. Med., 49(2006), no.2, 257-268.
  • [10] Munteanu M. I., Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr. J. Math., 5 (2008), 43-59.
  • [11] Musso F., Tricerri F., Riemannian metric on tangent bundles, Ann. Math. Pura. Appl., 150(4), 1-19, (1988).
  • [12] Salimov A.A., Agca F., Some properties os Sasakian metrics in cotangent bundles, Mediterr. J. math., 8 (2011), 243-255.
  • [13] Salimov A.A., Agca F., On para- Nordenian structures, Ann. Pol. Math., 99(2010) no.2, 193-200.
  • [14] Salimov A.A., Akbulut K., A note on a paraholomorphic Cheeger-Gromoll metic. Proc. In- dian Acad. Sci. (Math. Sci) 119 (2009), no.2,187-195.
  • [15] Salimov A.A., Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turk. J. Math., 32 (2008), 1-8.
  • [16] Sekizawa M., Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math., 14, 407-417, (1991).
  • [17] Sukhova O.V., Curvatures of the tangent bundle with a special almost product metric, Math. Notes., 89(2011) no.4, 568-571.
  • [18] Tamm I.E., Collection of scientific works ( Sobranie nauchnyh trudov (Russian)), II, Nauka, Moscow, (1975).
  • [19] Yano K., Ishihara S., Tangent and cotangent bundles, Marcel Dekker Inc., N.Y., (1973).
Year 2013, Volume: 6 Issue: 1, 129 - 146, 30.04.2013

Abstract

References

  • [1] Abbassi M.T.K, Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M, g), Comment. Math.Univ. Carolin. 45 (4) (2004) 591596.
  • [2] Abbassi M.T.K., Sarih M. On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno), 41 (2005), no. 1, 71-92.
  • [3] Abbassi M.T.K., Sarih M. On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl., 22(2005), no. 1, 19-47.
  • [4] A˘gca F., Salimov A.A., Some notes concerning Cheeger-Gromoll metrics, Hacet. J. Math. Stat., (2012) (to appear).
  • [5] Cheeger J., Gromoll D., On the structure of complete manifolds of nonnegative curvature, Ann. of Math., 96, 413-443, (1972).
  • [6] Gudmundsson S., Kappos E., On the geometry of the tangent bundle with the Cheeger- Gromoll metric, Tokyo J. Math. 25, no.1, 75-83, (2002).
  • [7] Gudmundsson S., Kappos E., On the geometry of the tangent bundles, Expo. Math.20, no.1, 1-41, (2002).
  • [8] Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. I, Interscience Publish- ers, New York-London, (1963).
  • [9] Munteanu M. I., Cheeger Gromoll type metrics on the tangent bundle. Sci. Ann. Univ. Agric. Sci. Vet. Med., 49(2006), no.2, 257-268.
  • [10] Munteanu M. I., Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr. J. Math., 5 (2008), 43-59.
  • [11] Musso F., Tricerri F., Riemannian metric on tangent bundles, Ann. Math. Pura. Appl., 150(4), 1-19, (1988).
  • [12] Salimov A.A., Agca F., Some properties os Sasakian metrics in cotangent bundles, Mediterr. J. math., 8 (2011), 243-255.
  • [13] Salimov A.A., Agca F., On para- Nordenian structures, Ann. Pol. Math., 99(2010) no.2, 193-200.
  • [14] Salimov A.A., Akbulut K., A note on a paraholomorphic Cheeger-Gromoll metic. Proc. In- dian Acad. Sci. (Math. Sci) 119 (2009), no.2,187-195.
  • [15] Salimov A.A., Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turk. J. Math., 32 (2008), 1-8.
  • [16] Sekizawa M., Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math., 14, 407-417, (1991).
  • [17] Sukhova O.V., Curvatures of the tangent bundle with a special almost product metric, Math. Notes., 89(2011) no.4, 568-571.
  • [18] Tamm I.E., Collection of scientific works ( Sobranie nauchnyh trudov (Russian)), II, Nauka, Moscow, (1975).
  • [19] Yano K., Ishihara S., Tangent and cotangent bundles, Marcel Dekker Inc., N.Y., (1973).
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Filiz Ocak

Publication Date April 30, 2013
Published in Issue Year 2013 Volume: 6 Issue: 1

Cite

APA Ocak, F. (2013). g-NATURAL METRICS ON THE COTANGENT BUNDLE. International Electronic Journal of Geometry, 6(1), 129-146.
AMA Ocak F. g-NATURAL METRICS ON THE COTANGENT BUNDLE. Int. Electron. J. Geom. April 2013;6(1):129-146.
Chicago Ocak, Filiz. “G-NATURAL METRICS ON THE COTANGENT BUNDLE”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 129-46.
EndNote Ocak F (April 1, 2013) g-NATURAL METRICS ON THE COTANGENT BUNDLE. International Electronic Journal of Geometry 6 1 129–146.
IEEE F. Ocak, “g-NATURAL METRICS ON THE COTANGENT BUNDLE”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 129–146, 2013.
ISNAD Ocak, Filiz. “G-NATURAL METRICS ON THE COTANGENT BUNDLE”. International Electronic Journal of Geometry 6/1 (April 2013), 129-146.
JAMA Ocak F. g-NATURAL METRICS ON THE COTANGENT BUNDLE. Int. Electron. J. Geom. 2013;6:129–146.
MLA Ocak, Filiz. “G-NATURAL METRICS ON THE COTANGENT BUNDLE”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 129-46.
Vancouver Ocak F. g-NATURAL METRICS ON THE COTANGENT BUNDLE. Int. Electron. J. Geom. 2013;6(1):129-46.