Araştırma Makalesi
BibTex RIS Kaynak Göster

ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS

Yıl 2012, Cilt: 5 Sayı: 1, 90 - 100, 30.04.2012

Öz

 

Kaynakça

  • [1] Ara, M., Geometry of F -Harmonic maps; Kodai Math. J. 22, 243-263, (1999).
  • [2] Baird, P. and Wood, J.C., Harmonic morphisms between Riemannain manifolds. Clarendon Press Oxford 2003.
  • [3] Baird, P and Gudmundson, S., p-harmoinc maps and minimal submanifolds, Math. Ann. 294 (1992), 611-624.
  • [4] Baird, P., Fardoun, A. and S. Ouakkas, Conformal and semi-conformal biharmonic maps,Annals of global analysis and geometry, 34 (2008),403–414.
  • [5] Course, .N, f-harmonic maps which map the boundary of the domain to one point in the target; New York Journal of Mathematics. 13, (2007), 423-435.
  • [6] Eells, J. and Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Maths, 86(1964).
  • [7] Eells, J. and Lemaire, L., Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
  • [8] Jiang, G.Y.: Harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7, 389-402 (1986).
  • [9] Loubeau, E. and Ou, Y.L., The caracterization of biharmonic morphisms; Differential geometry and its applications (Opava 2001) Math. Publ. 3(2001), 31-41.
  • [10] Ouakkas, S., Nasri, R. and Djaa, M., On the f-harmonic and f-biharmonic maps, JP Journal of Geometry and Topology, Volume 10, Number 1, 2010, Pages 11-27 Mars 2010.
  • [11] Ouakkas, S., Biharmonic maps, conformal deformations and the Hopf maps, Differential Geometry and its Applications,26 (2008), 495–502.
  • [12] Oniciuc, C., Biharmonic maps between Riemannian manifolds, An.Stinj. Univ Al.I. Cusa Iasi Mat. 48, (2002), 237-248.
Yıl 2012, Cilt: 5 Sayı: 1, 90 - 100, 30.04.2012

Öz

Kaynakça

  • [1] Ara, M., Geometry of F -Harmonic maps; Kodai Math. J. 22, 243-263, (1999).
  • [2] Baird, P. and Wood, J.C., Harmonic morphisms between Riemannain manifolds. Clarendon Press Oxford 2003.
  • [3] Baird, P and Gudmundson, S., p-harmoinc maps and minimal submanifolds, Math. Ann. 294 (1992), 611-624.
  • [4] Baird, P., Fardoun, A. and S. Ouakkas, Conformal and semi-conformal biharmonic maps,Annals of global analysis and geometry, 34 (2008),403–414.
  • [5] Course, .N, f-harmonic maps which map the boundary of the domain to one point in the target; New York Journal of Mathematics. 13, (2007), 423-435.
  • [6] Eells, J. and Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Maths, 86(1964).
  • [7] Eells, J. and Lemaire, L., Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
  • [8] Jiang, G.Y.: Harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7, 389-402 (1986).
  • [9] Loubeau, E. and Ou, Y.L., The caracterization of biharmonic morphisms; Differential geometry and its applications (Opava 2001) Math. Publ. 3(2001), 31-41.
  • [10] Ouakkas, S., Nasri, R. and Djaa, M., On the f-harmonic and f-biharmonic maps, JP Journal of Geometry and Topology, Volume 10, Number 1, 2010, Pages 11-27 Mars 2010.
  • [11] Ouakkas, S., Biharmonic maps, conformal deformations and the Hopf maps, Differential Geometry and its Applications,26 (2008), 495–502.
  • [12] Oniciuc, C., Biharmonic maps between Riemannian manifolds, An.Stinj. Univ Al.I. Cusa Iasi Mat. 48, (2002), 237-248.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

M. Djaa Bu kişi benim

A. M. Cherıf Bu kişi benim

K. Zegga Bu kişi benim

S. Ouakkas Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 5 Sayı: 1

Kaynak Göster

APA Djaa, M., Cherıf, A. M., Zegga, K., Ouakkas, S. (2012). ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS. International Electronic Journal of Geometry, 5(1), 90-100.
AMA Djaa M, Cherıf AM, Zegga K, Ouakkas S. ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS. Int. Electron. J. Geom. Nisan 2012;5(1):90-100.
Chicago Djaa, M., A. M. Cherıf, K. Zegga, ve S. Ouakkas. “ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS”. International Electronic Journal of Geometry 5, sy. 1 (Nisan 2012): 90-100.
EndNote Djaa M, Cherıf AM, Zegga K, Ouakkas S (01 Nisan 2012) ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS. International Electronic Journal of Geometry 5 1 90–100.
IEEE M. Djaa, A. M. Cherıf, K. Zegga, ve S. Ouakkas, “ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS”, Int. Electron. J. Geom., c. 5, sy. 1, ss. 90–100, 2012.
ISNAD Djaa, M. vd. “ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS”. International Electronic Journal of Geometry 5/1 (Nisan 2012), 90-100.
JAMA Djaa M, Cherıf AM, Zegga K, Ouakkas S. ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS. Int. Electron. J. Geom. 2012;5:90–100.
MLA Djaa, M. vd. “ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS”. International Electronic Journal of Geometry, c. 5, sy. 1, 2012, ss. 90-100.
Vancouver Djaa M, Cherıf AM, Zegga K, Ouakkas S. ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS. Int. Electron. J. Geom. 2012;5(1):90-100.