[1] De Rham, G. Sur la r´eductibilit´e d’un espace de Riemannian, Comm. Math. Helv. 26(1952),
328–344.
[2] Duggal, K. L. Spacetime manifolds and contact structures, Int. J. Math. & Math.
Sci., 13,(1990), 545–554.
[3] Duggal, K. L. and Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and
Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[4] Duggal, K. L. and Jin, D. H . Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World
Scientific, 2007.
[5] Duggal, K. L. and Sahin, B. Differential geometry of lightlike submanifolds, Frontiers in
Mathematics, Birkh¨auser, 2010.
[6] Duggal, K. L. and Jin, D. H., Totally umbilical lightlike submanifolds, Kodai Math. J. vol.
26(2003), 49-68.
[7] Hawking, S.W. and Ellis, G.F.R . The large scale structure of space-time, Cambridge Uni-
versity Press, Cambridge, 1973.
[8] Jin, D. H. Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J.
of Pure and Applied Math., 41(1)(2010), 569–581.
[9] Jin, D. H. Transversal half lightlike submanifolds of an indefinite Sasakian manifold, J.
Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 18(1)(2011), 51–61.
[10] Jin, D. H. Half lightlike submanifold of an indefinite Sasakian manifold, J. Korean Soc Math.
Edu. Ser. B: Pure Appl. Math., 18(2)(2011), 173–183.
[11] Jin, D. H. and Lee, J. W. Generic lightlike submanifolds of an indefinite cosymplectic mani-
fold, Mathematical Problems in Engineering, Article ID 610986,(2011), 16 pages.
[12] Kupeli, D. N. Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol.
366, Kluwer Acad. Publishers, Dordrecht, 1996.
[13] O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity, Academic
Press, 1983.
[14] Yano, K. and Kon, M. Generic submanifolds, Ann. di Math. pura Appl., 123(1980), 59–92. [15]
Yano, K. and Kon, M. Generic submanifolds of Sasakian manifolds, Kodai Math. J., 3(1980),
163–196.
Year 2012,
Volume: 5 Issue: 1, 108 - 119, 30.04.2012
[1] De Rham, G. Sur la r´eductibilit´e d’un espace de Riemannian, Comm. Math. Helv. 26(1952),
328–344.
[2] Duggal, K. L. Spacetime manifolds and contact structures, Int. J. Math. & Math.
Sci., 13,(1990), 545–554.
[3] Duggal, K. L. and Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and
Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[4] Duggal, K. L. and Jin, D. H . Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World
Scientific, 2007.
[5] Duggal, K. L. and Sahin, B. Differential geometry of lightlike submanifolds, Frontiers in
Mathematics, Birkh¨auser, 2010.
[6] Duggal, K. L. and Jin, D. H., Totally umbilical lightlike submanifolds, Kodai Math. J. vol.
26(2003), 49-68.
[7] Hawking, S.W. and Ellis, G.F.R . The large scale structure of space-time, Cambridge Uni-
versity Press, Cambridge, 1973.
[8] Jin, D. H. Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J.
of Pure and Applied Math., 41(1)(2010), 569–581.
[9] Jin, D. H. Transversal half lightlike submanifolds of an indefinite Sasakian manifold, J.
Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 18(1)(2011), 51–61.
[10] Jin, D. H. Half lightlike submanifold of an indefinite Sasakian manifold, J. Korean Soc Math.
Edu. Ser. B: Pure Appl. Math., 18(2)(2011), 173–183.
[11] Jin, D. H. and Lee, J. W. Generic lightlike submanifolds of an indefinite cosymplectic mani-
fold, Mathematical Problems in Engineering, Article ID 610986,(2011), 16 pages.
[12] Kupeli, D. N. Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol.
366, Kluwer Acad. Publishers, Dordrecht, 1996.
[13] O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity, Academic
Press, 1983.
[14] Yano, K. and Kon, M. Generic submanifolds, Ann. di Math. pura Appl., 123(1980), 59–92. [15]
Yano, K. and Kon, M. Generic submanifolds of Sasakian manifolds, Kodai Math. J., 3(1980),
163–196.
Duggal, K., & Jın, D. J. (2012). GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD. International Electronic Journal of Geometry, 5(1), 108-119.
AMA
Duggal K, Jın DJ. GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD. Int. Electron. J. Geom. April 2012;5(1):108-119.
Chicago
Duggal, K.l., and D. J. Jın. “GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD”. International Electronic Journal of Geometry 5, no. 1 (April 2012): 108-19.
EndNote
Duggal K, Jın DJ (April 1, 2012) GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD. International Electronic Journal of Geometry 5 1 108–119.
IEEE
K. Duggal and D. J. Jın, “GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD”, Int. Electron. J. Geom., vol. 5, no. 1, pp. 108–119, 2012.
ISNAD
Duggal, K.l. - Jın, D. J. “GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD”. International Electronic Journal of Geometry 5/1 (April 2012), 108-119.
JAMA
Duggal K, Jın DJ. GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD. Int. Electron. J. Geom. 2012;5:108–119.
MLA
Duggal, K.l. and D. J. Jın. “GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD”. International Electronic Journal of Geometry, vol. 5, no. 1, 2012, pp. 108-19.
Vancouver
Duggal K, Jın DJ. GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD. Int. Electron. J. Geom. 2012;5(1):108-19.