Two Dimensional null scrolls in R^n_1 and Massey's Theorem
Year 2009,
Volume: 2 Issue: 2, 58 - 62, 30.10.2009
Handan Öztekin
,
Mahmut Ergüt
Abstract
![]()
References
- [1] Balgetir, H. Generalized Null Scrolls in the Lorentzian Space, PhD Thesis, Fırat University,
Turkey,2002.
- [2] Balgetir, H. and Ergüt, M., (n-1)-Dimensional Generalized Null Scrolls in Rn, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 19, 227-231,2003.
- [3] Duggal, K.L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Its
Applications, Kluwer,Dortrecht,1996.
- [4] Hicks, N., Notes On Differential Geometry, Van Nostrand, Princeton, N.J., U.S.A.,1963.
- [5] Keleş, S. and Kuruoğlu, N., Properties of 2-Dimensional Ruled Surfaces in the Euclidean n-
Space En and Massey’s Theorem, Communications, Faculty of Sciences University of Ankara, pp.
151-158., 1984.
- [6] O’Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [7] Thas,C., Properties of Ruled Surfaces in the Euclidean Space En, Bull. Inst. Math. Academica
Sinica, Vol.6,1, 133-142, 1978.
Year 2009,
Volume: 2 Issue: 2, 58 - 62, 30.10.2009
Handan Öztekin
,
Mahmut Ergüt
References
- [1] Balgetir, H. Generalized Null Scrolls in the Lorentzian Space, PhD Thesis, Fırat University,
Turkey,2002.
- [2] Balgetir, H. and Ergüt, M., (n-1)-Dimensional Generalized Null Scrolls in Rn, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 19, 227-231,2003.
- [3] Duggal, K.L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Its
Applications, Kluwer,Dortrecht,1996.
- [4] Hicks, N., Notes On Differential Geometry, Van Nostrand, Princeton, N.J., U.S.A.,1963.
- [5] Keleş, S. and Kuruoğlu, N., Properties of 2-Dimensional Ruled Surfaces in the Euclidean n-
Space En and Massey’s Theorem, Communications, Faculty of Sciences University of Ankara, pp.
151-158., 1984.
- [6] O’Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [7] Thas,C., Properties of Ruled Surfaces in the Euclidean Space En, Bull. Inst. Math. Academica
Sinica, Vol.6,1, 133-142, 1978.
There are 7 citations in total.