Research Article
BibTex RIS Cite
Year 2010, Volume: 3 Issue: 2, 108 - 111, 30.10.2010

Abstract

References

  • [1] Blaschke, W., Affine Differentialgeometrie, Berlin, 1923.
  • [2] Salkovski, E., Affine Differentialgeometrie, W. De Gruyter, Berlin, 1934.
  • [3] Schirokov, P.A. & Schirokov, A. P., Affine Differentialgeometrie, Teubner, Leipzig, 1962.
  • [4] Li, A.M., Simon, U., Zhao, G., Global Affine Differential Geometry of Hypersurfaces, Walter de Gruyter, Berlin, New York, 1993.
  • [5] Nomizu, K. & Sasaki, T., Affine Differential Geometry: Geometry of Affine Immersions, Cambridge Univ. Press, 1994.
  • [6] Simon, U., Recent developments in afine differential geometry, Diff. Geo. And its App., Proc. Conf. Dubrovnik, Yugosl. (1988), 327-347.
  • [7] Khadjiev, Dj., An Application of the Invariant Theory to Differential Geometry (Rus- sian),Fan, Tashkent, 1988.
  • [8] Khadjiev, Dj. & Pek¸sen, O¨ ., The complete system of global differential and integral invariants for equi-affine curves, Dif. Geo. and its App. 20, (2004), 167-175.
  • [9] Pek¸sen, O¨ . & Khadjiev, Dj., On invariants of curves in centro-affine geometry, J. Math. Kyoto Univ. 44-3, (2004), 603-613.
  • [10] Monge, G., Application de l’analyse a’la geometrie, Paris, 1807 at 1809.
  • [11] Mayer, O., Geometrie centro-affine diferentielle des surfaces, Ann. Sci. Univ., Jassy, 21, (1934), 1-77.
  • [12] Magazinnikov, L.I., Centro-affine theory of ruled surfaces (Russian), Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. Geom. Sb. 161, (1962), 101–110.
  • [13] Katou, M., Center maps of afine minimal ruled hypersurfaces, Interdisiplinary Information Sciences, 12-1, (2006), 53-56.

The Affine Equivalence Problem Of Ruled Surfaces

Year 2010, Volume: 3 Issue: 2, 108 - 111, 30.10.2010

Abstract


References

  • [1] Blaschke, W., Affine Differentialgeometrie, Berlin, 1923.
  • [2] Salkovski, E., Affine Differentialgeometrie, W. De Gruyter, Berlin, 1934.
  • [3] Schirokov, P.A. & Schirokov, A. P., Affine Differentialgeometrie, Teubner, Leipzig, 1962.
  • [4] Li, A.M., Simon, U., Zhao, G., Global Affine Differential Geometry of Hypersurfaces, Walter de Gruyter, Berlin, New York, 1993.
  • [5] Nomizu, K. & Sasaki, T., Affine Differential Geometry: Geometry of Affine Immersions, Cambridge Univ. Press, 1994.
  • [6] Simon, U., Recent developments in afine differential geometry, Diff. Geo. And its App., Proc. Conf. Dubrovnik, Yugosl. (1988), 327-347.
  • [7] Khadjiev, Dj., An Application of the Invariant Theory to Differential Geometry (Rus- sian),Fan, Tashkent, 1988.
  • [8] Khadjiev, Dj. & Pek¸sen, O¨ ., The complete system of global differential and integral invariants for equi-affine curves, Dif. Geo. and its App. 20, (2004), 167-175.
  • [9] Pek¸sen, O¨ . & Khadjiev, Dj., On invariants of curves in centro-affine geometry, J. Math. Kyoto Univ. 44-3, (2004), 603-613.
  • [10] Monge, G., Application de l’analyse a’la geometrie, Paris, 1807 at 1809.
  • [11] Mayer, O., Geometrie centro-affine diferentielle des surfaces, Ann. Sci. Univ., Jassy, 21, (1934), 1-77.
  • [12] Magazinnikov, L.I., Centro-affine theory of ruled surfaces (Russian), Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. Geom. Sb. 161, (1962), 101–110.
  • [13] Katou, M., Center maps of afine minimal ruled hypersurfaces, Interdisiplinary Information Sciences, 12-1, (2006), 53-56.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ömer Pekşen

Publication Date October 30, 2010
Published in Issue Year 2010 Volume: 3 Issue: 2

Cite

APA Pekşen, Ö. (2010). The Affine Equivalence Problem Of Ruled Surfaces. International Electronic Journal of Geometry, 3(2), 108-111.
AMA Pekşen Ö. The Affine Equivalence Problem Of Ruled Surfaces. Int. Electron. J. Geom. October 2010;3(2):108-111.
Chicago Pekşen, Ömer. “The Affine Equivalence Problem Of Ruled Surfaces”. International Electronic Journal of Geometry 3, no. 2 (October 2010): 108-11.
EndNote Pekşen Ö (October 1, 2010) The Affine Equivalence Problem Of Ruled Surfaces. International Electronic Journal of Geometry 3 2 108–111.
IEEE Ö. Pekşen, “The Affine Equivalence Problem Of Ruled Surfaces”, Int. Electron. J. Geom., vol. 3, no. 2, pp. 108–111, 2010.
ISNAD Pekşen, Ömer. “The Affine Equivalence Problem Of Ruled Surfaces”. International Electronic Journal of Geometry 3/2 (October 2010), 108-111.
JAMA Pekşen Ö. The Affine Equivalence Problem Of Ruled Surfaces. Int. Electron. J. Geom. 2010;3:108–111.
MLA Pekşen, Ömer. “The Affine Equivalence Problem Of Ruled Surfaces”. International Electronic Journal of Geometry, vol. 3, no. 2, 2010, pp. 108-11.
Vancouver Pekşen Ö. The Affine Equivalence Problem Of Ruled Surfaces. Int. Electron. J. Geom. 2010;3(2):108-11.