Yıl 2019, Cilt 12 , Sayı 2, Sayfalar 210 - 217 2019-10-03

Curvature Properties of Quasi-Para-Sasakian Manifolds

I. Küpeli Erken [1]



quasi-para-Sasakian manifold, paracosymplectic manifold, constant curvature
  • [1] Bejan, C. L. and Crasmareanu, M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann. Global Anal. Geom. 46(2) (2014), 117–127.
  • [2] Blair, D. E., The theory of quasi-Sasakian structures. J. Differential Geom. 1 (1967), 331–345.
  • [3] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, Birkhäuser. Boston 2002.
  • [4] Cappelletti-Montano, B., Küpeli Erken, I. and Murathan, C., Nullity conditions in paracontact geometry. Diff. Geom. Appl. 30 (2012), 665–693.
  • [5] Dacko, P., On almost para-cosymplectic manifolds. Tsukuba J. Math. 28 (2004), 193–213.
  • [6] Erdem, S., On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (φ,φ')-holomorphic maps between them. Houston J. Math. 28 (2002), 21–45.
  • [7] Kanemaki, S., Quasi-Sasakian manifolds. Tohoku Math. J. 29 (1977), 227–233.
  • [8] Kaneyuki, S. and Williams, F. L., Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 99 (1985), 173–187.
  • [9] Küpeli Erken, I., Some classes of 3-dimensional normal almost paracontact metric manifolds. Honam Math. J. 37(4) (2015), 457-468.
  • [10] Küpeli Erken, I., On normal almost paracontact metric manifolds of dimension 3. Facta Univ. Ser. Math. Inform. 30(5) (2015), 777-788.
  • [11] Olszak, Z., Curvature properties of quasi-Sasakian manifolds. Tensor. 38 (1982), 19–28.
  • [12] Olszak, Z., Normal almost contact metric manifolds of dimension three. Ann. Polon. Math. XLVII (1986), 41–50.
  • [13] Tanno, S., The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700-717.
  • [14] Tanno, S., Quasi-Sasakian structures of rank 2p + 1. J. Differential Geom. 5 (1971), 317–324.
  • [15] Wełyczko, J., On basic curvature identities for almost (para)contact metric manifolds. Available in Arxiv: 1209.4731 [math. DG].
  • [16] Welyczko, J., On Legendre Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds. Result. Math. 54 (2009), 377–387.
  • [17] Zamkovoy, S., Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36 (2009), 37–60.
Birincil Dil en
Bölüm Araştırma Makalesi
Yazarlar

Yazar: I. Küpeli Erken

Tarihler

Yayımlanma Tarihi : 3 Ekim 2019

Bibtex @araştırma makalesi { iejg628085, journal = {International Electronic Journal of Geometry}, issn = {}, eissn = {1307-5624}, address = {}, publisher = {Kazım İLARSLAN}, year = {2019}, volume = {12}, pages = {210 - 217}, doi = {}, title = {Curvature Properties of Quasi-Para-Sasakian Manifolds}, key = {cite}, author = {Erken, I. Küpeli} }
APA Erken, I . (2019). Curvature Properties of Quasi-Para-Sasakian Manifolds. International Electronic Journal of Geometry , 12 (2) , 210-217 . Retrieved from https://dergipark.org.tr/tr/pub/iejg/issue/49199/628085
MLA Erken, I . "Curvature Properties of Quasi-Para-Sasakian Manifolds". International Electronic Journal of Geometry 12 (2019 ): 210-217 <https://dergipark.org.tr/tr/pub/iejg/issue/49199/628085>
Chicago Erken, I . "Curvature Properties of Quasi-Para-Sasakian Manifolds". International Electronic Journal of Geometry 12 (2019 ): 210-217
RIS TY - JOUR T1 - Curvature Properties of Quasi-Para-Sasakian Manifolds AU - I. Küpeli Erken Y1 - 2019 PY - 2019 N1 - DO - T2 - International Electronic Journal of Geometry JF - Journal JO - JOR SP - 210 EP - 217 VL - 12 IS - 2 SN - -1307-5624 M3 - UR - Y2 - 2019 ER -
EndNote %0 International Electronic Journal of Geometry Curvature Properties of Quasi-Para-Sasakian Manifolds %A I. Küpeli Erken %T Curvature Properties of Quasi-Para-Sasakian Manifolds %D 2019 %J International Electronic Journal of Geometry %P -1307-5624 %V 12 %N 2 %R %U
ISNAD Erken, I. Küpeli . "Curvature Properties of Quasi-Para-Sasakian Manifolds". International Electronic Journal of Geometry 12 / 2 (Ekim 2019): 210-217 .
AMA Erken I . Curvature Properties of Quasi-Para-Sasakian Manifolds. International Electronic Journal of Geometry. 2019; 12(2): 210-217.
Vancouver Erken I . Curvature Properties of Quasi-Para-Sasakian Manifolds. International Electronic Journal of Geometry. 2019; 12(2): 217-210.