Araştırma Makalesi
BibTex RIS Kaynak Göster

Quadrilaterals as Geometric Loci

Yıl 2022, Cilt: 15 Sayı: 2, 321 - 333, 31.10.2022
https://doi.org/10.36890/iejg.1062741

Öz

We give necessary and sufficient conditions, both algebraic and geometric, for a quadrilateral to be the level set of the sum of the distances to m ≥ 2 different lines.

Kaynakça

  • [1] Elias Abboud. Viviani’s theorem and its extension. College Math. J., 41(3):203– 211, 2010.
  • [2] Henk J. M. Bos. Redefining geometrical exactness. Descartes’ transformation of the early modern concept of construction. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, 2001.
  • [3] Christoph Gudermann. Grundriss der analytischen Sphärik. DuMont-Schauberg, Köln, 1830.
  • [4] Lorenz Halbeisen, Norbert Hungerbühler, and Juan Läuchli. Mit harmonischen Verhältnissen zu Kegelschnitten. Perlen der klassischen Geometrie. Springer Spektrum, Berlin, 2021.
  • [5] Norbert Hungerbühler and Gerhard Wanner. Ceva-triangular points of a triangle. Elem. Math., 2021, published online first.
  • [6] Wei Lai and Weng Kin Ho. Graphing a quadrilateral using a single cartesian equation. In Electronic Proceedings of the 22nd Asian Technology Conference in Mathematics, Chung Yuan Christian University, Chungli, Taiwan, December 15–19 2017. Mathematics and Technology, LLC.
Yıl 2022, Cilt: 15 Sayı: 2, 321 - 333, 31.10.2022
https://doi.org/10.36890/iejg.1062741

Öz

Kaynakça

  • [1] Elias Abboud. Viviani’s theorem and its extension. College Math. J., 41(3):203– 211, 2010.
  • [2] Henk J. M. Bos. Redefining geometrical exactness. Descartes’ transformation of the early modern concept of construction. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, 2001.
  • [3] Christoph Gudermann. Grundriss der analytischen Sphärik. DuMont-Schauberg, Köln, 1830.
  • [4] Lorenz Halbeisen, Norbert Hungerbühler, and Juan Läuchli. Mit harmonischen Verhältnissen zu Kegelschnitten. Perlen der klassischen Geometrie. Springer Spektrum, Berlin, 2021.
  • [5] Norbert Hungerbühler and Gerhard Wanner. Ceva-triangular points of a triangle. Elem. Math., 2021, published online first.
  • [6] Wei Lai and Weng Kin Ho. Graphing a quadrilateral using a single cartesian equation. In Electronic Proceedings of the 22nd Asian Technology Conference in Mathematics, Chung Yuan Christian University, Chungli, Taiwan, December 15–19 2017. Mathematics and Technology, LLC.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Lorenz Halbeısen 0000-0001-6078-7237

Norbert Hungerbühler 0000-0001-6191-0022

Juan Läuchli Bu kişi benim 0000-0001-6200-7708

Erken Görünüm Tarihi 23 Temmuz 2022
Yayımlanma Tarihi 31 Ekim 2022
Kabul Tarihi 18 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 15 Sayı: 2

Kaynak Göster

APA Halbeısen, L., Hungerbühler, N., & Läuchli, J. (2022). Quadrilaterals as Geometric Loci. International Electronic Journal of Geometry, 15(2), 321-333. https://doi.org/10.36890/iejg.1062741
AMA Halbeısen L, Hungerbühler N, Läuchli J. Quadrilaterals as Geometric Loci. Int. Electron. J. Geom. Ekim 2022;15(2):321-333. doi:10.36890/iejg.1062741
Chicago Halbeısen, Lorenz, Norbert Hungerbühler, ve Juan Läuchli. “Quadrilaterals As Geometric Loci”. International Electronic Journal of Geometry 15, sy. 2 (Ekim 2022): 321-33. https://doi.org/10.36890/iejg.1062741.
EndNote Halbeısen L, Hungerbühler N, Läuchli J (01 Ekim 2022) Quadrilaterals as Geometric Loci. International Electronic Journal of Geometry 15 2 321–333.
IEEE L. Halbeısen, N. Hungerbühler, ve J. Läuchli, “Quadrilaterals as Geometric Loci”, Int. Electron. J. Geom., c. 15, sy. 2, ss. 321–333, 2022, doi: 10.36890/iejg.1062741.
ISNAD Halbeısen, Lorenz vd. “Quadrilaterals As Geometric Loci”. International Electronic Journal of Geometry 15/2 (Ekim 2022), 321-333. https://doi.org/10.36890/iejg.1062741.
JAMA Halbeısen L, Hungerbühler N, Läuchli J. Quadrilaterals as Geometric Loci. Int. Electron. J. Geom. 2022;15:321–333.
MLA Halbeısen, Lorenz vd. “Quadrilaterals As Geometric Loci”. International Electronic Journal of Geometry, c. 15, sy. 2, 2022, ss. 321-33, doi:10.36890/iejg.1062741.
Vancouver Halbeısen L, Hungerbühler N, Läuchli J. Quadrilaterals as Geometric Loci. Int. Electron. J. Geom. 2022;15(2):321-33.