Araştırma Makalesi
BibTex RIS Kaynak Göster

The de Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds

Yıl 2022, Cilt: 15 Sayı: 2, 242 - 252, 31.10.2022
https://doi.org/10.36890/iejg.1118628

Öz

In this study, we answer the question under what conditions a hemi-slant submanifold of locally decomposable metallic Riemannian manifolds admits a well defined canonical de Rham cohomology class. Firstly, we give the integrability and minimality conditions of the distributions arose from its definition. Later, we find some necessary conditions depending on the above-named concepts of the associated distributions for such a type of submanifold to define a de Rham cohomology class. Furthermore, we analyzed the non-triviality of this cohomology class In the end, we construct two examples which enable better expressing the main results.

Kaynakça

  • Bejancu, A.: Geometry of CR Submanifolds. D. Reidel Publishing Company, Dordrecht (1986).
  • Bhatt, L., Dube, K. K.: On CR-submanifold of nearly and closely para cosymplectic manifolds. Demonstratio Math. 35 (2), 405-413 (2002).
  • Blaga, A. M., Hreţcanu, C. E.: Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold. Novi Sad J. Math. 48 (2), 55-80 (2018).
  • Blaga, A. M., Nannicini, A.: Foliations induced by metallic structures. Preprint arXiv:1903.04006 (2019).
  • Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Semi-slant submanifolds of a Sasakian manifold. Geom. Dedicata 78 (2), 183-199 (1999).
  • Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Slant submanifolds in Sasakian manifolds. Glasg. Math. J. 42 (1), 125-138 (2000).
  • Carriazo, A.: New Developments in Slant Submanifolds Theory. Narosa Publishing House, New Delhi (2002).
  • Chen, B. Y.: Cohomology of CR submanifolds. Ann. Fac. Sci. Toulouse Math. (5) 3 (2), 167-172 (1981).
  • Chen, B. Y.: Slant immersions. Bull. Aust. Math. Soc. 41 (1), 135-147 (1990).
  • Chen, B. Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Leuven (1990).
  • Crâşmăreanu, M. C., Hreţcanu, C. E.: Golden differential geometry. Chaos Solitons Fractals 38 (5), 1229-1238 (2008).
  • Deshmukh, S.: Cohomology of CR-submanifolds of a nearly Kaehler manifold. Math. Chronicle 16, 47-57 (1982).
  • Ghazal, T.: Cohomology of CR-submanifolds of a quasi-Kaehler manifolds. Int. J. Pure Appl. Math. 52 (5), 711-715 (2009).
  • Gök, M.: Cohomology of semi-invariant submanifolds in metallic Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. https://doi.org/10.1142/S0219887822501390 (Accepted)
  • Gök, M., Kılıç, E., Özgür, C.: f_{(a,b)}(3,2,1)-structures on manifolds. J. Geom. Phys., 169, 104346 (2021).
  • Hreţcanu, C. E., Crâşmăreanu, M. C.: On some invariant submanifolds in a Riemannian manifold with golden structure. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53 (suppl. 1), 199-211 (2007).
  • Hreţcanu, C. E., Blaga, A. M.: Warped product submanifolds in metallic Riemannian manifolds. Tamkang J. Math. 51 (3), 161-186 (2020).
  • Hreţcanu, C. E., Crâşmăreanu, M. C.: Applications of the golden ratio on Riemannian manifolds. Turkish J. Math. 33 (2), 179-191 (2009).
  • Hreţcanu, C. E., Crâşmăreanu, M. C.: Metallic structures on Riemannian manifolds. Rev. Un. Mat. Argentina 54 (2), 15-27 (2013).
  • Hreţcanu, C. E., Blaga, A. M.: Submanifolds in metallic Riemannian manifolds. Differ. Geom. Dyn. Syst. 20, 83-97 (2018).
  • Hreţcanu, C. E., Blaga, A. M.: Slant and semi-slant submanifolds in metallic Riemannian manifolds. J. Funct. Spaces 2018, 2864263 (2018).
  • Hreţcanu, C. E., Blaga, A. M.: Hemi-slant submanifolds in metallic Riemannian manifolds. Carpathian J. Math. 35 (2), 59-68 (2019).
  • Hreţcanu, C. E., Blaga, A. M.: Types of submanifolds in metallic Riemannian manifolds: A short survey. Mathematics 9 (19), 2467 (2021).
  • Ianuş, S., Marchiafava, S., Vîlcu, G. E.: Paraquaternionic CR-submanifolds of paraquaternionic Kähler manifolds and semi-Riemannian submersions. Cent. Eur. J. Math. 8 (4), 735-753 (2010).
  • Khan, V. A., Khan, M. A.: Pseudo-slant submanifolds of a Sasakian manifold. Indian J. Pure Appl. Math., 38 (1), 31-42 (2007).
  • Lotta, A.: Slant submanifolds in contact geometry. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 39(87) (1-4), 183-198 (1996).
  • Martin, D.: Manifold Theory. Horwood Publishing, Chichester (2002).
  • Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 40 (1), 55-61 (1994).
  • Pitis, G.: On some submanifolds of a locally product manifold. Kodai Math. J. 9 (3), 327-333 (1986).
  • Renteln, P.: Manifolds, Tensors, and Forms. Cambridge University Press, New York (2014).
  • Şahin, B.: Slant submanifolds of an almost product Riemannian manifold. J. Korean Math. Soc. 43 (4), 717-732 (2006).
  • Şahin, B.: Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 95 (3), 207-226 (2009).
  • Şahin, F.: Cohomology of hemi-slant submanifolds of a Kaehler manifold. J. Adv. Stud. Topol. 5 (2), 27-31 (2014).
Yıl 2022, Cilt: 15 Sayı: 2, 242 - 252, 31.10.2022
https://doi.org/10.36890/iejg.1118628

Öz

Kaynakça

  • Bejancu, A.: Geometry of CR Submanifolds. D. Reidel Publishing Company, Dordrecht (1986).
  • Bhatt, L., Dube, K. K.: On CR-submanifold of nearly and closely para cosymplectic manifolds. Demonstratio Math. 35 (2), 405-413 (2002).
  • Blaga, A. M., Hreţcanu, C. E.: Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold. Novi Sad J. Math. 48 (2), 55-80 (2018).
  • Blaga, A. M., Nannicini, A.: Foliations induced by metallic structures. Preprint arXiv:1903.04006 (2019).
  • Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Semi-slant submanifolds of a Sasakian manifold. Geom. Dedicata 78 (2), 183-199 (1999).
  • Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Slant submanifolds in Sasakian manifolds. Glasg. Math. J. 42 (1), 125-138 (2000).
  • Carriazo, A.: New Developments in Slant Submanifolds Theory. Narosa Publishing House, New Delhi (2002).
  • Chen, B. Y.: Cohomology of CR submanifolds. Ann. Fac. Sci. Toulouse Math. (5) 3 (2), 167-172 (1981).
  • Chen, B. Y.: Slant immersions. Bull. Aust. Math. Soc. 41 (1), 135-147 (1990).
  • Chen, B. Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Leuven (1990).
  • Crâşmăreanu, M. C., Hreţcanu, C. E.: Golden differential geometry. Chaos Solitons Fractals 38 (5), 1229-1238 (2008).
  • Deshmukh, S.: Cohomology of CR-submanifolds of a nearly Kaehler manifold. Math. Chronicle 16, 47-57 (1982).
  • Ghazal, T.: Cohomology of CR-submanifolds of a quasi-Kaehler manifolds. Int. J. Pure Appl. Math. 52 (5), 711-715 (2009).
  • Gök, M.: Cohomology of semi-invariant submanifolds in metallic Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. https://doi.org/10.1142/S0219887822501390 (Accepted)
  • Gök, M., Kılıç, E., Özgür, C.: f_{(a,b)}(3,2,1)-structures on manifolds. J. Geom. Phys., 169, 104346 (2021).
  • Hreţcanu, C. E., Crâşmăreanu, M. C.: On some invariant submanifolds in a Riemannian manifold with golden structure. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53 (suppl. 1), 199-211 (2007).
  • Hreţcanu, C. E., Blaga, A. M.: Warped product submanifolds in metallic Riemannian manifolds. Tamkang J. Math. 51 (3), 161-186 (2020).
  • Hreţcanu, C. E., Crâşmăreanu, M. C.: Applications of the golden ratio on Riemannian manifolds. Turkish J. Math. 33 (2), 179-191 (2009).
  • Hreţcanu, C. E., Crâşmăreanu, M. C.: Metallic structures on Riemannian manifolds. Rev. Un. Mat. Argentina 54 (2), 15-27 (2013).
  • Hreţcanu, C. E., Blaga, A. M.: Submanifolds in metallic Riemannian manifolds. Differ. Geom. Dyn. Syst. 20, 83-97 (2018).
  • Hreţcanu, C. E., Blaga, A. M.: Slant and semi-slant submanifolds in metallic Riemannian manifolds. J. Funct. Spaces 2018, 2864263 (2018).
  • Hreţcanu, C. E., Blaga, A. M.: Hemi-slant submanifolds in metallic Riemannian manifolds. Carpathian J. Math. 35 (2), 59-68 (2019).
  • Hreţcanu, C. E., Blaga, A. M.: Types of submanifolds in metallic Riemannian manifolds: A short survey. Mathematics 9 (19), 2467 (2021).
  • Ianuş, S., Marchiafava, S., Vîlcu, G. E.: Paraquaternionic CR-submanifolds of paraquaternionic Kähler manifolds and semi-Riemannian submersions. Cent. Eur. J. Math. 8 (4), 735-753 (2010).
  • Khan, V. A., Khan, M. A.: Pseudo-slant submanifolds of a Sasakian manifold. Indian J. Pure Appl. Math., 38 (1), 31-42 (2007).
  • Lotta, A.: Slant submanifolds in contact geometry. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 39(87) (1-4), 183-198 (1996).
  • Martin, D.: Manifold Theory. Horwood Publishing, Chichester (2002).
  • Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 40 (1), 55-61 (1994).
  • Pitis, G.: On some submanifolds of a locally product manifold. Kodai Math. J. 9 (3), 327-333 (1986).
  • Renteln, P.: Manifolds, Tensors, and Forms. Cambridge University Press, New York (2014).
  • Şahin, B.: Slant submanifolds of an almost product Riemannian manifold. J. Korean Math. Soc. 43 (4), 717-732 (2006).
  • Şahin, B.: Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 95 (3), 207-226 (2009).
  • Şahin, F.: Cohomology of hemi-slant submanifolds of a Kaehler manifold. J. Adv. Stud. Topol. 5 (2), 27-31 (2014).
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Gök 0000-0001-6346-0758

Erken Görünüm Tarihi 23 Temmuz 2022
Yayımlanma Tarihi 31 Ekim 2022
Kabul Tarihi 3 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 15 Sayı: 2

Kaynak Göster

APA Gök, M. (2022). The de Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds. International Electronic Journal of Geometry, 15(2), 242-252. https://doi.org/10.36890/iejg.1118628
AMA Gök M. The de Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds. Int. Electron. J. Geom. Ekim 2022;15(2):242-252. doi:10.36890/iejg.1118628
Chicago Gök, Mustafa. “The De Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds”. International Electronic Journal of Geometry 15, sy. 2 (Ekim 2022): 242-52. https://doi.org/10.36890/iejg.1118628.
EndNote Gök M (01 Ekim 2022) The de Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds. International Electronic Journal of Geometry 15 2 242–252.
IEEE M. Gök, “The de Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds”, Int. Electron. J. Geom., c. 15, sy. 2, ss. 242–252, 2022, doi: 10.36890/iejg.1118628.
ISNAD Gök, Mustafa. “The De Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds”. International Electronic Journal of Geometry 15/2 (Ekim 2022), 242-252. https://doi.org/10.36890/iejg.1118628.
JAMA Gök M. The de Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds. Int. Electron. J. Geom. 2022;15:242–252.
MLA Gök, Mustafa. “The De Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds”. International Electronic Journal of Geometry, c. 15, sy. 2, 2022, ss. 242-5, doi:10.36890/iejg.1118628.
Vancouver Gök M. The de Rham Cohomology Group of a Hemi-Slant Submanifold in Metallic Riemannian Manifolds. Int. Electron. J. Geom. 2022;15(2):242-5.