Research Article
BibTex RIS Cite
Year 2023, Volume: 16 Issue: 1, 417 - 434, 30.04.2023
https://doi.org/10.36890/iejg.1148612

Abstract

References

  • [1] Atindogbe, C., Gutierrez, M., Hounnonkpe, R.: New properties on normalized null hypersurfaces. Mediterr. J. Math. 15(166), 1–19 (2018).
  • [2] Barros, M., Romero, A.: Indefinite Kähler manifolds. Math. Ann. 261, 55–62 (1982).
  • [3] Bejancu, A., Duggal, K.L.: Lightlike submanifolds of semi-Riemannian manifolds. Acta Appl. Math. 38, 197–215 (1995).
  • [4] Duggal, K.L., Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers. Netherlands (1996).
  • [5] Duggal, K.L., Sahin, B.: Differential Geometry of Lightlike Submanifolds. Birkhauser Verlag AG. Berlin (2010).
  • [6] Gutierrez, M., Olea, B.: Induced Riemannian structures on null hypersurfaces. Math. Nachr. 289, 1219–1236 (2016).
  • [7] Ngakeu, F., Tetsing, H.F.: α−associated metrics on rigged null hypersurfaces. Turkish J. Math. 43, 1161–1181 (2019).
  • [8] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press. New York (1983).
  • [9] de Rham, G.: Sur la ŕeductibilit´e d’un espace de Riemannian. Comm. Math. Helv. 26, 328–344 (1952).
  • [10] Singh, A.P., Atindogbe, C., Kumar, R., Jain, V.: Chen-like inequalities on null hypersurfaces with closed rigging of a Lorentzian manifold. Int. J. Geom. Methods Mod. Phys. 18(8), 1–23 (2021).
  • [11] Tetsing, H.F., Ngakeu, F., Olea, B.: Rigging technique for 1-lightlike submanifolds and preferred rigged connections. Mediterr. J. Math. 16, 1–20 (2019).

Normalized Null hypersurfaces of Indefinite Kähler Manifolds

Year 2023, Volume: 16 Issue: 1, 417 - 434, 30.04.2023
https://doi.org/10.36890/iejg.1148612

Abstract

We study null hypersurfaces of indefinite Kähler manifolds and by taking the advantages of the almost complex structure $J$, we select a suitable rigging $\zeta$, which we call the $J-$rigging, on the null hypersurface. This suitable rigging enables us to build an associated Hermitian metric $\breve{g}$ on the ambient space and which is restricted into a non-degenerated metric $\widetilde{g}$ on the normalized null hypersurface. We derive Gauss-Weingarten type formulae for null hypersurface $M$ of an indefinite Kähler manifold $\overline{M}$ with a fixed closed Killing $J-$rigging for $M$. Later, we establish some relations linking the curvatures, null sectional curvatures, Ricci curvatures, scalar curvatures etc. of the ambient manifold and normalized null hypersurface.

References

  • [1] Atindogbe, C., Gutierrez, M., Hounnonkpe, R.: New properties on normalized null hypersurfaces. Mediterr. J. Math. 15(166), 1–19 (2018).
  • [2] Barros, M., Romero, A.: Indefinite Kähler manifolds. Math. Ann. 261, 55–62 (1982).
  • [3] Bejancu, A., Duggal, K.L.: Lightlike submanifolds of semi-Riemannian manifolds. Acta Appl. Math. 38, 197–215 (1995).
  • [4] Duggal, K.L., Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers. Netherlands (1996).
  • [5] Duggal, K.L., Sahin, B.: Differential Geometry of Lightlike Submanifolds. Birkhauser Verlag AG. Berlin (2010).
  • [6] Gutierrez, M., Olea, B.: Induced Riemannian structures on null hypersurfaces. Math. Nachr. 289, 1219–1236 (2016).
  • [7] Ngakeu, F., Tetsing, H.F.: α−associated metrics on rigged null hypersurfaces. Turkish J. Math. 43, 1161–1181 (2019).
  • [8] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press. New York (1983).
  • [9] de Rham, G.: Sur la ŕeductibilit´e d’un espace de Riemannian. Comm. Math. Helv. 26, 328–344 (1952).
  • [10] Singh, A.P., Atindogbe, C., Kumar, R., Jain, V.: Chen-like inequalities on null hypersurfaces with closed rigging of a Lorentzian manifold. Int. J. Geom. Methods Mod. Phys. 18(8), 1–23 (2021).
  • [11] Tetsing, H.F., Ngakeu, F., Olea, B.: Rigging technique for 1-lightlike submanifolds and preferred rigged connections. Mediterr. J. Math. 16, 1–20 (2019).
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Amrınder Pal Sıngh 0000-0001-8049-4570

Cyriaque Atındogbe 0000-0001-8346-4027

Rakesh Kumar 0000-0001-8896-7539

Varun Jain 0000-0003-1846-6805

Early Pub Date April 28, 2023
Publication Date April 30, 2023
Acceptance Date October 21, 2022
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Sıngh, A. P., Atındogbe, C., Kumar, R., Jain, V. (2023). Normalized Null hypersurfaces of Indefinite Kähler Manifolds. International Electronic Journal of Geometry, 16(1), 417-434. https://doi.org/10.36890/iejg.1148612
AMA Sıngh AP, Atındogbe C, Kumar R, Jain V. Normalized Null hypersurfaces of Indefinite Kähler Manifolds. Int. Electron. J. Geom. April 2023;16(1):417-434. doi:10.36890/iejg.1148612
Chicago Sıngh, Amrınder Pal, Cyriaque Atındogbe, Rakesh Kumar, and Varun Jain. “Normalized Null Hypersurfaces of Indefinite Kähler Manifolds”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 417-34. https://doi.org/10.36890/iejg.1148612.
EndNote Sıngh AP, Atındogbe C, Kumar R, Jain V (April 1, 2023) Normalized Null hypersurfaces of Indefinite Kähler Manifolds. International Electronic Journal of Geometry 16 1 417–434.
IEEE A. P. Sıngh, C. Atındogbe, R. Kumar, and V. Jain, “Normalized Null hypersurfaces of Indefinite Kähler Manifolds”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 417–434, 2023, doi: 10.36890/iejg.1148612.
ISNAD Sıngh, Amrınder Pal et al. “Normalized Null Hypersurfaces of Indefinite Kähler Manifolds”. International Electronic Journal of Geometry 16/1 (April 2023), 417-434. https://doi.org/10.36890/iejg.1148612.
JAMA Sıngh AP, Atındogbe C, Kumar R, Jain V. Normalized Null hypersurfaces of Indefinite Kähler Manifolds. Int. Electron. J. Geom. 2023;16:417–434.
MLA Sıngh, Amrınder Pal et al. “Normalized Null Hypersurfaces of Indefinite Kähler Manifolds”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 417-34, doi:10.36890/iejg.1148612.
Vancouver Sıngh AP, Atındogbe C, Kumar R, Jain V. Normalized Null hypersurfaces of Indefinite Kähler Manifolds. Int. Electron. J. Geom. 2023;16(1):417-34.