[1] Arslan, K., Deszcz, R., Ezentaş, R., Hotloś, M., Murathan, C.: On generalized Robertson-Walker spacetimes satisfying some curvature condition.
Turkish J. Math. 38 (2), 353-373 (2014). https://doi.org/10.3906/mat-1304-3
[2] Besse, A. L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. (3) 10. Springer. Berlin (1987).
[3] Cecil, T. E., Ryan, P. J.: Geometry of Hypersurfaces. Springer Monographs in Mathematics. Springer. New York, Heidelberg, Dodrecht,
London (2015).
[4] Chen, B. Y.: Pseudo-Riemannian Geometry, δ-Invariants and Applications. World Scientific (2011).
[5] Chen, B.Y.: Differential Geometry of Warped Product Manifolds and Submanifolds. World Scientific (2017).
[7] Chojnacka-Dulas, J., Deszcz, R., Głogowska, M., Prvanović, M.: On warped products manifolds satisfying some curvature conditions. J. Geom.
Phys. 74 , 328-341 (2013). https://doi.org/10.1016/j.geomphys.2013.08.007
[8] Decu, S., Deszcz, R., Haesen, S.: A classification of Roter type spacetimes. Int. J. Geom. Meth. Modern Phys. 18 (9) , art. 2150147, 13 pp. (2021).
https://doi.org/10.1142/S0219887821501474
[9] Decu, S., Petrović-Torgašev, M., Šebeković, A., Verstraelen, L.: On the Roter type of Wintgen ideal submanifolds. Rev. Roumaine Math. Pures
Appl. 57 (1) , 75-90 (2012).
[10] Defever, F., Deszcz, R., Prvanović, M.: On warped product manifolds satisfying some curvature condition of pseudosymmetry type. Bull. Greek
Math. Soc. 36 , 43-67 (1994).
[11] Derdziński, A., Roter, W.: Some theorems on conformally symmetric manifolds. Tensor (N.S.). 32 (1), 11-23 (1978).
[12] Derdziński A., Roter, W.: Some properties of conformally symmetric manifolds which are not Ricci-recurrent. Tensor (N.S.). 34 (1), 11-20 (1980).
[13] Derdziński, A., Roter, W.: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds. Tohoku Math. J. 59 (4),
565-602 (2007). https://doi.org/10.2748/tmj/1199649875
[14] Derdziński A., Roter,W.: Global properties of indefinite metrics with parallelWeyl tensor. In: Pure and Applied Differential Geometry - PADGE
2007. Shaker Verlag, Aachen, 63-72 (2007).
[15] Derdziński, A., Roter, W.: On compact manifolds admitting indefinite metrics with parallel Weyl tensor. J. Geom. Phys. 58 (9), 1137-1147 (2008).
https://doi.org/10.1016/j.geomphys.2008.03.011
[16] Derdziński, A., Roter, W.: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. Simon Stevin. 16 (1), 117-128 (2009).
DOI:2010.36045/bbms/1235574196
[17] Derdziński, A., Roter, W.: Compact pseudo-Riemannian manifolds with parallel Weyl tensor. Ann. Global Anal. Geom. 37, 73-90 (2010).
https://doi.org/10.1007/s10455-009-9173-9
[18] Derdzinski, A., Terek, I.: New examples of compact Weyl-parallel manifolds. Preprint arXiv: 2210.03660v1 (2022).
[19] Derdzinski, A., Terek, I.: The topology of compact rank-one ECS manifolds. Preprint arXiv: 2210.09195v1 (2022).
[20] Deszcz, R.: On conformally flat Riemannian manifolds satisfying certain curvature conditions. Tensor (N.S.). 49 (2), 134-145 (1990).
[21] Deszcz, R.: On four-dimensional warped product manifolds satisfying certain pseudo-symmetry curvature conditions. Colloq. Math. 62 (1), 103-120
(1991). DOI: 10.4064/cm-62-1-103-120
[22] Deszcz, R.: On some Akivis-Goldberg type metrics. Publ. Inst. Math. (Beograd) (N.S.). 74 (88) , 71-83 (2003). DOI: 10.2298/PIM0374071D
[23] Deszcz, R., Dillen, F., Verstraelen, L., Vrancken, L.: Quasi-Einstein totally real submanifolds of the nearly Kähler 6-sphere. Tôhoku Math. J. 51
(4), 461-478 (1999). https://doi.org/10.2748/tmj/1178224715
[24] Deszcz, R., Głogowska, M., Hashiguchi, H., Hotloś, M., Yawata, M.: On semi-Riemannian manifolds satisfying some conformally invariant
curvature condition. Colloq. Math. 131 (2), 149-170 (2013). DOI: 10.4064/cm131-2-1
[25] Deszcz, R., Głogowska, M., Hotloś, M.: On hypersurfaces satisfying conditions determined by the Opozda-Verstraelen affine curvature tensor.
Ann. Polon. Math. 126 (3), 215-240 (2021). DOI: 10.4064/ap200715-6-5
[26] Deszcz, R., Głogowska, M., Hotloś, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some warped product manifolds. Poster, Conf.
"Differential Geometry", Banach Conf. Center at B˛edlewo, June 19 to June 24 (2017).
[27] Deszcz, R., Głogowska, M., Hotloś, M., Sawicz, K.: A Survey on Generalized Einstein Metric Conditions. In: Advances in Lorentzian Geometry,
Proceedings of the Lorentzian Geometry Conference in Berlin, AMS/IP Studies in Advanced Mathematics. 49, S.-T. Yau (series ed.), M.
Plaue, A.D. Rendall and M. Scherfner (eds.), 27-46 (2011).
[28] Deszcz, R., Głogowska, M., Hotlośs, M., Sawicz, K.: Hypersurfaces in space forms satisfying a particular Roter type equation. Preprint arXiv:
2211.06700v2 (2022).
[29] Deszcz, R., Głogowska, M., Hotloś, M., ¸Sentürk, Z.: On certain quasi-Einstein semisymmetric hypersurfaces. Ann. Univ. Sci. Budapest. Eötvös
Sect. Math. 41 , 151-164 (1998).
[30] Deszcz, R., Głogowska, M., Hotloś, M., Verstraelen, L.: On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian
space forms. Colloq. Math. 96 (2), 149-166 (2003). DOI: 10.4064/cm96-2-1
[31] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: On some curvature conditions of pseudosymmetry type. Period. Math. Hung. 70 (2),
153-170 (2015). DOI 10.1007/s10998-014-0081-9
[32] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some curvature conditions. J. Geom. Phys. 99,
218-231 (2016). https://doi.org/10.1016/j.geomphys.2015.10.010
[33] Deszcz, R., Głogowska, M., Jełowicki, J., Petrović-Torgašev, M., Zafindratafa, G.: On Riemann and Weyl compatible tensors. Publ. Inst. Math.
(Beograd) (N.S.). 94 (108), 111-124 (2013). DOI: 10.2298/PIM1308111D
[34] Deszcz, R., Głogowska, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some class of warped product manifolds. Int. J. Geom. Methods
Modern Phys. 13 (1), art. 1550135, 36 pp. (2016). https://doi.org/10.1142/S0219887815501352
[35] Deszcz, R., Głogowska, M., Petrović-Torgašev, M., Verstraelen, L.: Curvature properties of some class of minimal hypersurfaces in Euclidean
spaces. Filomat. 29 (3), 479-492 (2015). DOI 10.2298/FIL1503479D
[36] Deszcz, R., Głogowska, M., Plaue, M., Sawicz, K., Scherfner, M.: On hypersurfaces in space forms satisfying particular curvature conditions of
Tachibana type. Kragujevac J. Math. 35 (2), 223-247 (2011).
[37] Deszcz, R., Głogowska, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some generalized Einstein metric condition. J. Geom. Phys.
148, 103562 20 pp. (2020). https://doi.org/10.1016/j.geomphys.2019.103562
[38] Deszcz, R., Haesen, S., Verstraelen L.: On natural symmetries. Topics in Differential Geometry, Ch. 6. Editors A. Mihai, I. Mihai and R.
Miron. Editura Academiei Romˆane (2008).
[39] Deszcz, R., Hotloś, M.: On a certain subclass of pseudosymmetric manifolds. Publ. Math. Debrecen. 53 (1-2), 29-48 (1998). DOI: 10.5486/PMD
[40] Deszcz, R., Hotloś,M.: On hypersurfaces with type number two in spaces of constant curvature. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 46,
19-34 (2003).
[41] Deszcz, R., Hotloś, M.: On geodesic mappings in a particular class of Roter spaces. Colloq. Math. 166 (2), 267-290 (2021). DOI: 10.4064/cm7797-
1-2021
[42] Deszcz, R., Hotloś, M., Jełowicki, J., Kundu, H., Shaikh, A. A.: Curvature properties of Gödel metric. Int. J. Geom. Meth. Modern Phys. 11(3),
1450025, 20 pp. (2014). https://doi.org/10.1142/S021988781450025X
[43] Deszcz, R., Hotloś, M., Şentürk, Z.: On curvature properties of certain quasi-Einstein hypersurfaces. Int. J. Math. 23 (7), 1250073 17 pp. (2012).
https://doi.org/10.1142/S0129167X12500735
[44] Deszcz, R., Kowalczyk, D.: On some class of pseudosymmetric warped products. Colloq. Math. 97 (1), 7-22 (2003). DOI: 10.4064/cm97-1-2
[45] Deszcz, R., Petrović-Torgašev, M., Verstraelen, L., Zafindratafa, G.: On Chen ideal submanifolds satisfying some conditions of pseudo-symmetry
type. Bull. Malaysian Math. Sci. Soc. 39 (1), 103-131 (2016). https://doi.org/10.1007/s40840-015-0164-7
[46] Deszcz, R., Plaue, M., Scherfner, M.: On Roter type warped products with 1-dimensional fibres. J. Geom. Phys. 69, 1-11 (2013).
https://dx.doi.org/10.1016/j.geomphys.2013.02.006
[47] Deszcz, R., Scherfner, M.: On a particular class of warped products with fibres locally isometric to generalized Cartan hypersurfaces. Colloq. Math.
109 (1), 13-29 (2007). DOI: 10.4064/cm109-1-3
[48] Deszcz, R., Verstraelen, L.: Hypersurfaces of semi-Riemannian conformally flat manifolds. In: Geometry and Topology of Submanifolds, III.
World Sci., River Edge, NJ, 131-147 (1991).
[49] Deszcz, R., Verstraelen, L., Vrancken, L.: The symmetry of warped product spacetimes. Gen. Relativ. Gravit. 23 (6), 671-681 (1991).
https://doi.org/10.1007/BF00756772
[50] Deszcz, R., Verstraelen, L., Yaprak, Ş.: Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature
tensor. Chinese J. Math. 22 (2), 139-157 (1994). https://www.jstor.org/stable/43836548395 dergipark
[51] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On hypersurfaces with pseudosymmetric Weyl tensor. In: Geometry and Topology of Submanifolds,
VIII, World Sci., River Edge, NJ, 111-120 (1996).
[52] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungarica. 78 (1-2), 45-57
(1998). https://doi.org/10.1023/A:1006566319359
[53] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat spaces. In: Geometry and Topology
of Submanifolds, IX. World Sci., River Edge, NJ, 108-117 (1999).
[54] Deszcz, R., Yaprak, ¸S.: Curvature properties of certain pseudosymmetric manifolds. Publ. Math. Debrecen. 45 (3-4), 333-345 (1994). DOI:
10.5486/PMD
[55] Duggal, K. L., Sharma, R.: Hypersurfaces in a conformally flat space with curvature collineation. Internat. J. Math. and Math. Sci. 14 (3), 595-604
(1991). https://doi.org/10.1155/S0161171291000807
[57] Eyasmin, S.: Hypersurfaces in a conformally flat space. Int. J. Geom. Methods Modern Phys. 18 (5), art. 2150067, pp. 7 (2021).
https://doi.org/10.1142/S0219887821500675
[65] Hotloś, M.: On conformally symmetric warped products. Ann. Acad. Paedagog. Crac. 23. Studia Math. 4, 75-85 (2004).
[66] Kon, M.: Pseudo-Einstein real hypersurfaces in complex space forms. J. Differential Geom. 14 (3) , 339-354 (1979). DOI: 10.4310/jdg/1214435100
[67] Kowalczyk, D.: On some class of semisymmetric manifolds. Soochow J. Math. 27 (4), 445-461 (2001).
[68] Kowalczyk, D.: On the Reissner-Nordström-de Sitter type spacetimes. Tsukuba J. Math. 30 (2), 363-381 (2006). DOI: 10.21099/tkbjm/
1496165068
[69] Kundu, H., Mandal, J. K., Baishya, K. K.: On hypersurfaces with semisymmetric and pseudosymmetric Weyl tensor embedded in a conformally flat
manifold. Preprint, Research Square, 17 pp. (2022).
[70] Lumiste, Ü.: Semiparallel Submanifolds in Space Forms. Springer Science + Business Media, New York, LLC (2009).
[71] Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan. 28 (3), 529-540 (1976). DOI: 10.2969/jmsj/02830529
[72] Sawicz, K.: On some class of hypersurfaces with three distinct principal curvatures. In: Banach Center Publ., Inst. Math. Polish Acad. Sci. 69,
145-156 (2005). DOI: 10.4064/bc69-0-9
[73] Sawicz, K.: On curvature characterization of some hypersurfaces in spaces of constant curvature. Publ. Inst. Math. (Beograd) (N.S.). 79 (93) ,
95-107 (2006). DOI: 10.2298/PIM0693095S
[74] Sawicz, K.: Curvature properties of some class of hypersurfaces in Euclidean spaces. Publ. Inst. Math. (Beograd) (N.S.). 98 (112) , 165-177 (2015).
DOI: 10.2298/PIM141025001S
[75] Shaikh, A. A., Deszcz, R., Hotlo´s, M., Jełowicki, J., Kundu, H.: On pseudosymmetric manifolds. Publ. Math. Debrecen 86 (3-4) , 433-456 (2015).
DOI: 10.5486/PMD.2015.7057
[76] Shaikh, A. A., Kundu, H.: On warped product generalized Roter type manifolds. Balkan J. Geom. Appl. 21 (2), 82-94 (2016).
[77] Shaikh, A. A., Kundu, H.: On generalized Roter type manifolds. Kragujevac J. Math. 43 (3), 471-493 (2019).
[78] Sharma, R.: Cauchy-Riemann (CR) - submanifolds of semi-Riemannian manifolds with applications to relativity and hydrodynamics.
Electronic Theses and Dissertations, 1374. Windsor, Ontario, Canada. Ph.D. thesis, University of Windsor (1986).https://scholar.uwindsor.ca/etd/1374
[79] Stuchlik, Z., Hledik, S.: Properties of the Reissner-Nordström spacetimes with a nonzero cosmological constant. Acta Phys. Slovaca. 52 (5), 363-407
(2002).
[80] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version. J. Differential Geom. 17 (4), 531-582
(1982). DOI: 10.4310/jdg/1214437486
[81] Verstraelen, L.: Comments on the pseudo-symmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. World
Sci., Singapore, 119-209 (1994).
[82] Verstraelen, L.: A coincise mini history of Geometry. Kragujevac J. Math. 38 (1), 5-21 (2014).
[83] Verstraelen, L.: Natural extrinsic geometrical symmetries – an introduction. In: Recent advances in the geometry of submanifolds: dedicated
to the memory of Franki Dillen (1963-2013). AMS special session on geometry of submanifolds, San Francisco State University, San
Francisco, CA, USA, October 25-26, 2014, and the AMS special session on recent advances in the geometry of submanifolds: dedicated to
the memory of Franki Dillen (1963–2013), Michigan State University, East Lansing, Ml, USA, March 14-15, 2015. Proceedings. Providence.
Suceavˇa, Bogdan D. (ed.) et al. Contemporary Math. 674, 5-16 (2016). DOI: http://dx.doi.org/10.1090/conm/674
[85] Verstraelen, L.: Submanifolds theory – a contemplation of submanifolds. In: Geometry of Submanifolds. AMS special session in honor of Bang-
Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20-21, 2018. Providence, RI: American Mathematical
Society (AMS). J. Van der Veken (ed) et al. Contemporary Math. 756. 21-56 (2020). DOI: https://doi.org/10.1090/conm/756
[86] Yaprak, Ş.: Intrinsic and extrinsic differential geometry concerning curvature conditions of pseudosymmetry type. Ph.D. thesis, Katholieke
Universiteit Leuven (1993).
[87] Zafindratafa, G.: Sous-variétés soumises a des conditions de courbure (in French). Ph.D. thesis, Katholieke Universiteit Leuven (1991).
A Note on Some Generalized Curvature Tensor
Year 2023,
Volume: 16 Issue: 1, 379 - 397, 30.04.2023
For any semi-Riemannian manifold (M, g) we define some generalized curvature tensor E as a linear combination of Kulkarni-Nomizu products formed by the metric tensor, the Ricci tensor and its square of given manifold. That tensor is closely related to quasi-Einstein spaces, Roter spaces and some Roter type spaces.
[1] Arslan, K., Deszcz, R., Ezentaş, R., Hotloś, M., Murathan, C.: On generalized Robertson-Walker spacetimes satisfying some curvature condition.
Turkish J. Math. 38 (2), 353-373 (2014). https://doi.org/10.3906/mat-1304-3
[2] Besse, A. L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. (3) 10. Springer. Berlin (1987).
[3] Cecil, T. E., Ryan, P. J.: Geometry of Hypersurfaces. Springer Monographs in Mathematics. Springer. New York, Heidelberg, Dodrecht,
London (2015).
[4] Chen, B. Y.: Pseudo-Riemannian Geometry, δ-Invariants and Applications. World Scientific (2011).
[5] Chen, B.Y.: Differential Geometry of Warped Product Manifolds and Submanifolds. World Scientific (2017).
[7] Chojnacka-Dulas, J., Deszcz, R., Głogowska, M., Prvanović, M.: On warped products manifolds satisfying some curvature conditions. J. Geom.
Phys. 74 , 328-341 (2013). https://doi.org/10.1016/j.geomphys.2013.08.007
[8] Decu, S., Deszcz, R., Haesen, S.: A classification of Roter type spacetimes. Int. J. Geom. Meth. Modern Phys. 18 (9) , art. 2150147, 13 pp. (2021).
https://doi.org/10.1142/S0219887821501474
[9] Decu, S., Petrović-Torgašev, M., Šebeković, A., Verstraelen, L.: On the Roter type of Wintgen ideal submanifolds. Rev. Roumaine Math. Pures
Appl. 57 (1) , 75-90 (2012).
[10] Defever, F., Deszcz, R., Prvanović, M.: On warped product manifolds satisfying some curvature condition of pseudosymmetry type. Bull. Greek
Math. Soc. 36 , 43-67 (1994).
[11] Derdziński, A., Roter, W.: Some theorems on conformally symmetric manifolds. Tensor (N.S.). 32 (1), 11-23 (1978).
[12] Derdziński A., Roter, W.: Some properties of conformally symmetric manifolds which are not Ricci-recurrent. Tensor (N.S.). 34 (1), 11-20 (1980).
[13] Derdziński, A., Roter, W.: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds. Tohoku Math. J. 59 (4),
565-602 (2007). https://doi.org/10.2748/tmj/1199649875
[14] Derdziński A., Roter,W.: Global properties of indefinite metrics with parallelWeyl tensor. In: Pure and Applied Differential Geometry - PADGE
2007. Shaker Verlag, Aachen, 63-72 (2007).
[15] Derdziński, A., Roter, W.: On compact manifolds admitting indefinite metrics with parallel Weyl tensor. J. Geom. Phys. 58 (9), 1137-1147 (2008).
https://doi.org/10.1016/j.geomphys.2008.03.011
[16] Derdziński, A., Roter, W.: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. Simon Stevin. 16 (1), 117-128 (2009).
DOI:2010.36045/bbms/1235574196
[17] Derdziński, A., Roter, W.: Compact pseudo-Riemannian manifolds with parallel Weyl tensor. Ann. Global Anal. Geom. 37, 73-90 (2010).
https://doi.org/10.1007/s10455-009-9173-9
[18] Derdzinski, A., Terek, I.: New examples of compact Weyl-parallel manifolds. Preprint arXiv: 2210.03660v1 (2022).
[19] Derdzinski, A., Terek, I.: The topology of compact rank-one ECS manifolds. Preprint arXiv: 2210.09195v1 (2022).
[20] Deszcz, R.: On conformally flat Riemannian manifolds satisfying certain curvature conditions. Tensor (N.S.). 49 (2), 134-145 (1990).
[21] Deszcz, R.: On four-dimensional warped product manifolds satisfying certain pseudo-symmetry curvature conditions. Colloq. Math. 62 (1), 103-120
(1991). DOI: 10.4064/cm-62-1-103-120
[22] Deszcz, R.: On some Akivis-Goldberg type metrics. Publ. Inst. Math. (Beograd) (N.S.). 74 (88) , 71-83 (2003). DOI: 10.2298/PIM0374071D
[23] Deszcz, R., Dillen, F., Verstraelen, L., Vrancken, L.: Quasi-Einstein totally real submanifolds of the nearly Kähler 6-sphere. Tôhoku Math. J. 51
(4), 461-478 (1999). https://doi.org/10.2748/tmj/1178224715
[24] Deszcz, R., Głogowska, M., Hashiguchi, H., Hotloś, M., Yawata, M.: On semi-Riemannian manifolds satisfying some conformally invariant
curvature condition. Colloq. Math. 131 (2), 149-170 (2013). DOI: 10.4064/cm131-2-1
[25] Deszcz, R., Głogowska, M., Hotloś, M.: On hypersurfaces satisfying conditions determined by the Opozda-Verstraelen affine curvature tensor.
Ann. Polon. Math. 126 (3), 215-240 (2021). DOI: 10.4064/ap200715-6-5
[26] Deszcz, R., Głogowska, M., Hotloś, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some warped product manifolds. Poster, Conf.
"Differential Geometry", Banach Conf. Center at B˛edlewo, June 19 to June 24 (2017).
[27] Deszcz, R., Głogowska, M., Hotloś, M., Sawicz, K.: A Survey on Generalized Einstein Metric Conditions. In: Advances in Lorentzian Geometry,
Proceedings of the Lorentzian Geometry Conference in Berlin, AMS/IP Studies in Advanced Mathematics. 49, S.-T. Yau (series ed.), M.
Plaue, A.D. Rendall and M. Scherfner (eds.), 27-46 (2011).
[28] Deszcz, R., Głogowska, M., Hotlośs, M., Sawicz, K.: Hypersurfaces in space forms satisfying a particular Roter type equation. Preprint arXiv:
2211.06700v2 (2022).
[29] Deszcz, R., Głogowska, M., Hotloś, M., ¸Sentürk, Z.: On certain quasi-Einstein semisymmetric hypersurfaces. Ann. Univ. Sci. Budapest. Eötvös
Sect. Math. 41 , 151-164 (1998).
[30] Deszcz, R., Głogowska, M., Hotloś, M., Verstraelen, L.: On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian
space forms. Colloq. Math. 96 (2), 149-166 (2003). DOI: 10.4064/cm96-2-1
[31] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: On some curvature conditions of pseudosymmetry type. Period. Math. Hung. 70 (2),
153-170 (2015). DOI 10.1007/s10998-014-0081-9
[32] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some curvature conditions. J. Geom. Phys. 99,
218-231 (2016). https://doi.org/10.1016/j.geomphys.2015.10.010
[33] Deszcz, R., Głogowska, M., Jełowicki, J., Petrović-Torgašev, M., Zafindratafa, G.: On Riemann and Weyl compatible tensors. Publ. Inst. Math.
(Beograd) (N.S.). 94 (108), 111-124 (2013). DOI: 10.2298/PIM1308111D
[34] Deszcz, R., Głogowska, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some class of warped product manifolds. Int. J. Geom. Methods
Modern Phys. 13 (1), art. 1550135, 36 pp. (2016). https://doi.org/10.1142/S0219887815501352
[35] Deszcz, R., Głogowska, M., Petrović-Torgašev, M., Verstraelen, L.: Curvature properties of some class of minimal hypersurfaces in Euclidean
spaces. Filomat. 29 (3), 479-492 (2015). DOI 10.2298/FIL1503479D
[36] Deszcz, R., Głogowska, M., Plaue, M., Sawicz, K., Scherfner, M.: On hypersurfaces in space forms satisfying particular curvature conditions of
Tachibana type. Kragujevac J. Math. 35 (2), 223-247 (2011).
[37] Deszcz, R., Głogowska, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some generalized Einstein metric condition. J. Geom. Phys.
148, 103562 20 pp. (2020). https://doi.org/10.1016/j.geomphys.2019.103562
[38] Deszcz, R., Haesen, S., Verstraelen L.: On natural symmetries. Topics in Differential Geometry, Ch. 6. Editors A. Mihai, I. Mihai and R.
Miron. Editura Academiei Romˆane (2008).
[39] Deszcz, R., Hotloś, M.: On a certain subclass of pseudosymmetric manifolds. Publ. Math. Debrecen. 53 (1-2), 29-48 (1998). DOI: 10.5486/PMD
[40] Deszcz, R., Hotloś,M.: On hypersurfaces with type number two in spaces of constant curvature. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 46,
19-34 (2003).
[41] Deszcz, R., Hotloś, M.: On geodesic mappings in a particular class of Roter spaces. Colloq. Math. 166 (2), 267-290 (2021). DOI: 10.4064/cm7797-
1-2021
[42] Deszcz, R., Hotloś, M., Jełowicki, J., Kundu, H., Shaikh, A. A.: Curvature properties of Gödel metric. Int. J. Geom. Meth. Modern Phys. 11(3),
1450025, 20 pp. (2014). https://doi.org/10.1142/S021988781450025X
[43] Deszcz, R., Hotloś, M., Şentürk, Z.: On curvature properties of certain quasi-Einstein hypersurfaces. Int. J. Math. 23 (7), 1250073 17 pp. (2012).
https://doi.org/10.1142/S0129167X12500735
[44] Deszcz, R., Kowalczyk, D.: On some class of pseudosymmetric warped products. Colloq. Math. 97 (1), 7-22 (2003). DOI: 10.4064/cm97-1-2
[45] Deszcz, R., Petrović-Torgašev, M., Verstraelen, L., Zafindratafa, G.: On Chen ideal submanifolds satisfying some conditions of pseudo-symmetry
type. Bull. Malaysian Math. Sci. Soc. 39 (1), 103-131 (2016). https://doi.org/10.1007/s40840-015-0164-7
[46] Deszcz, R., Plaue, M., Scherfner, M.: On Roter type warped products with 1-dimensional fibres. J. Geom. Phys. 69, 1-11 (2013).
https://dx.doi.org/10.1016/j.geomphys.2013.02.006
[47] Deszcz, R., Scherfner, M.: On a particular class of warped products with fibres locally isometric to generalized Cartan hypersurfaces. Colloq. Math.
109 (1), 13-29 (2007). DOI: 10.4064/cm109-1-3
[48] Deszcz, R., Verstraelen, L.: Hypersurfaces of semi-Riemannian conformally flat manifolds. In: Geometry and Topology of Submanifolds, III.
World Sci., River Edge, NJ, 131-147 (1991).
[49] Deszcz, R., Verstraelen, L., Vrancken, L.: The symmetry of warped product spacetimes. Gen. Relativ. Gravit. 23 (6), 671-681 (1991).
https://doi.org/10.1007/BF00756772
[50] Deszcz, R., Verstraelen, L., Yaprak, Ş.: Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature
tensor. Chinese J. Math. 22 (2), 139-157 (1994). https://www.jstor.org/stable/43836548395 dergipark
[51] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On hypersurfaces with pseudosymmetric Weyl tensor. In: Geometry and Topology of Submanifolds,
VIII, World Sci., River Edge, NJ, 111-120 (1996).
[52] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungarica. 78 (1-2), 45-57
(1998). https://doi.org/10.1023/A:1006566319359
[53] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat spaces. In: Geometry and Topology
of Submanifolds, IX. World Sci., River Edge, NJ, 108-117 (1999).
[54] Deszcz, R., Yaprak, ¸S.: Curvature properties of certain pseudosymmetric manifolds. Publ. Math. Debrecen. 45 (3-4), 333-345 (1994). DOI:
10.5486/PMD
[55] Duggal, K. L., Sharma, R.: Hypersurfaces in a conformally flat space with curvature collineation. Internat. J. Math. and Math. Sci. 14 (3), 595-604
(1991). https://doi.org/10.1155/S0161171291000807
[57] Eyasmin, S.: Hypersurfaces in a conformally flat space. Int. J. Geom. Methods Modern Phys. 18 (5), art. 2150067, pp. 7 (2021).
https://doi.org/10.1142/S0219887821500675
[65] Hotloś, M.: On conformally symmetric warped products. Ann. Acad. Paedagog. Crac. 23. Studia Math. 4, 75-85 (2004).
[66] Kon, M.: Pseudo-Einstein real hypersurfaces in complex space forms. J. Differential Geom. 14 (3) , 339-354 (1979). DOI: 10.4310/jdg/1214435100
[67] Kowalczyk, D.: On some class of semisymmetric manifolds. Soochow J. Math. 27 (4), 445-461 (2001).
[68] Kowalczyk, D.: On the Reissner-Nordström-de Sitter type spacetimes. Tsukuba J. Math. 30 (2), 363-381 (2006). DOI: 10.21099/tkbjm/
1496165068
[69] Kundu, H., Mandal, J. K., Baishya, K. K.: On hypersurfaces with semisymmetric and pseudosymmetric Weyl tensor embedded in a conformally flat
manifold. Preprint, Research Square, 17 pp. (2022).
[70] Lumiste, Ü.: Semiparallel Submanifolds in Space Forms. Springer Science + Business Media, New York, LLC (2009).
[71] Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan. 28 (3), 529-540 (1976). DOI: 10.2969/jmsj/02830529
[72] Sawicz, K.: On some class of hypersurfaces with three distinct principal curvatures. In: Banach Center Publ., Inst. Math. Polish Acad. Sci. 69,
145-156 (2005). DOI: 10.4064/bc69-0-9
[73] Sawicz, K.: On curvature characterization of some hypersurfaces in spaces of constant curvature. Publ. Inst. Math. (Beograd) (N.S.). 79 (93) ,
95-107 (2006). DOI: 10.2298/PIM0693095S
[74] Sawicz, K.: Curvature properties of some class of hypersurfaces in Euclidean spaces. Publ. Inst. Math. (Beograd) (N.S.). 98 (112) , 165-177 (2015).
DOI: 10.2298/PIM141025001S
[75] Shaikh, A. A., Deszcz, R., Hotlo´s, M., Jełowicki, J., Kundu, H.: On pseudosymmetric manifolds. Publ. Math. Debrecen 86 (3-4) , 433-456 (2015).
DOI: 10.5486/PMD.2015.7057
[76] Shaikh, A. A., Kundu, H.: On warped product generalized Roter type manifolds. Balkan J. Geom. Appl. 21 (2), 82-94 (2016).
[77] Shaikh, A. A., Kundu, H.: On generalized Roter type manifolds. Kragujevac J. Math. 43 (3), 471-493 (2019).
[78] Sharma, R.: Cauchy-Riemann (CR) - submanifolds of semi-Riemannian manifolds with applications to relativity and hydrodynamics.
Electronic Theses and Dissertations, 1374. Windsor, Ontario, Canada. Ph.D. thesis, University of Windsor (1986).https://scholar.uwindsor.ca/etd/1374
[79] Stuchlik, Z., Hledik, S.: Properties of the Reissner-Nordström spacetimes with a nonzero cosmological constant. Acta Phys. Slovaca. 52 (5), 363-407
(2002).
[80] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version. J. Differential Geom. 17 (4), 531-582
(1982). DOI: 10.4310/jdg/1214437486
[81] Verstraelen, L.: Comments on the pseudo-symmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. World
Sci., Singapore, 119-209 (1994).
[82] Verstraelen, L.: A coincise mini history of Geometry. Kragujevac J. Math. 38 (1), 5-21 (2014).
[83] Verstraelen, L.: Natural extrinsic geometrical symmetries – an introduction. In: Recent advances in the geometry of submanifolds: dedicated
to the memory of Franki Dillen (1963-2013). AMS special session on geometry of submanifolds, San Francisco State University, San
Francisco, CA, USA, October 25-26, 2014, and the AMS special session on recent advances in the geometry of submanifolds: dedicated to
the memory of Franki Dillen (1963–2013), Michigan State University, East Lansing, Ml, USA, March 14-15, 2015. Proceedings. Providence.
Suceavˇa, Bogdan D. (ed.) et al. Contemporary Math. 674, 5-16 (2016). DOI: http://dx.doi.org/10.1090/conm/674
[85] Verstraelen, L.: Submanifolds theory – a contemplation of submanifolds. In: Geometry of Submanifolds. AMS special session in honor of Bang-
Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20-21, 2018. Providence, RI: American Mathematical
Society (AMS). J. Van der Veken (ed) et al. Contemporary Math. 756. 21-56 (2020). DOI: https://doi.org/10.1090/conm/756
[86] Yaprak, Ş.: Intrinsic and extrinsic differential geometry concerning curvature conditions of pseudosymmetry type. Ph.D. thesis, Katholieke
Universiteit Leuven (1993).
[87] Zafindratafa, G.: Sous-variétés soumises a des conditions de courbure (in French). Ph.D. thesis, Katholieke Universiteit Leuven (1991).
Deszcz, R., Głogowska, M., Hotloś, M., Petrović-torgašev, M., et al. (2023). A Note on Some Generalized Curvature Tensor. International Electronic Journal of Geometry, 16(1), 379-397. https://doi.org/10.36890/iejg.1273631
AMA
Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G. A Note on Some Generalized Curvature Tensor. Int. Electron. J. Geom. April 2023;16(1):379-397. doi:10.36890/iejg.1273631
Chicago
Deszcz, Ryszard, Małgorzata Głogowska, Marian Hotloś, Miroslava Petrović-torgašev, and Georges Zafındratafa. “A Note on Some Generalized Curvature Tensor”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 379-97. https://doi.org/10.36890/iejg.1273631.
EndNote
Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G (April 1, 2023) A Note on Some Generalized Curvature Tensor. International Electronic Journal of Geometry 16 1 379–397.
IEEE
R. Deszcz, M. Głogowska, M. Hotloś, M. Petrović-torgašev, and G. Zafındratafa, “A Note on Some Generalized Curvature Tensor”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 379–397, 2023, doi: 10.36890/iejg.1273631.
ISNAD
Deszcz, Ryszard et al. “A Note on Some Generalized Curvature Tensor”. International Electronic Journal of Geometry 16/1 (April 2023), 379-397. https://doi.org/10.36890/iejg.1273631.
JAMA
Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G. A Note on Some Generalized Curvature Tensor. Int. Electron. J. Geom. 2023;16:379–397.
MLA
Deszcz, Ryszard et al. “A Note on Some Generalized Curvature Tensor”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 379-97, doi:10.36890/iejg.1273631.
Vancouver
Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G. A Note on Some Generalized Curvature Tensor. Int. Electron. J. Geom. 2023;16(1):379-97.