Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 17 Sayı: 1, 221 - 231, 23.04.2024
https://doi.org/10.36890/iejg.1466325

Öz

Kaynakça

  • [1] Berndt, J. and Suh, Y. J.: On the geometry of homogeneous real hypersurfaces in the complex quadric. In: Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop 16, 1-9 (2012).
  • [2] Berndt, J. and Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex quadric. Internat. J. Math. 24, 1350050 (18pp) (2013).
  • [3] Cho, J.T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debr. 54, 473-487(1999).
  • [4] Kimura, M.,Lee, H., Pérez, J.D. and Suh, Y.J.: Ruled real hypersurfaces in the complex quadric., J. Geom. Anal., 31 (2021), 7989-8012.
  • [5] Klein, S. : Totally geodesic submanifolds of the complex quadric and the quaternionic 2-Grassmannians. Trans. Amer. Math. Soc. 361, 4927- 4967(2009).
  • [6] Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vol. II, AWiley-Interscience Publ.,Wiley Classics Library Ed., 1996.
  • [7] Lee, H. and Suh, Y.J.: Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric. Math. Phys. Analysis and Geom. 23, 44 (2020).
  • [8] Pérez, J.D. and Suh, Y.J.: Derivatives of the shape operator of real hypersurfaces in the complex quadric. Results Math. 73, 126(2018).
  • [9] Reckziegel, H.: On the geometry of the complex quadric, in Geometry and Topology of Submanifolds VIII. World Scientific Publishing, Brussels/Nordfjordeid, River Edge, 302-315(1995).
  • [10] Smyth, B.: Differential geometry of complex hypersurfaces. Ann. of Math. 85, 246-266(1967).
  • [11] Suh, Y.J.: Real hypersurfaces in the complex quadric with Reeb parallel shape operator. International J. Math. 25, 1450059 17pp (2014).
  • [12] Suh, Y.J.:Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. in Math. 281, 886-905(2015) .
  • [13] Suh, Y.J.: Real hypersurfaces in complex quadric with harmonic curvature. J. Math. Pures Appl. 106, 393-410(2016).

New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric

Yıl 2024, Cilt: 17 Sayı: 1, 221 - 231, 23.04.2024
https://doi.org/10.36890/iejg.1466325

Öz

A real hypersurface $M$ in the complex quadric $Q^{m}=SO_{m+2}/SO_mSO_2$ inherits an almost contact metric structure . This structure allows to define, for any nonnull real number $k$, the so called $k$-th generalized Tanaka-Webster connection on $M$, $\hat{\nabla}^{(k)}$. If $\nabla$ denotes the Levi-Civita connection on $M$, we introduce the concepts of $(\hat{\nabla}^{(k)},\nabla)$-Codazzi and $(\hat{\nabla}^{(k)},\nabla)$-Killing shape operator $S$ of the real hypersurface and classify real hypersurfaces in $Q$ satisfying any of these conditions.

Kaynakça

  • [1] Berndt, J. and Suh, Y. J.: On the geometry of homogeneous real hypersurfaces in the complex quadric. In: Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop 16, 1-9 (2012).
  • [2] Berndt, J. and Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex quadric. Internat. J. Math. 24, 1350050 (18pp) (2013).
  • [3] Cho, J.T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debr. 54, 473-487(1999).
  • [4] Kimura, M.,Lee, H., Pérez, J.D. and Suh, Y.J.: Ruled real hypersurfaces in the complex quadric., J. Geom. Anal., 31 (2021), 7989-8012.
  • [5] Klein, S. : Totally geodesic submanifolds of the complex quadric and the quaternionic 2-Grassmannians. Trans. Amer. Math. Soc. 361, 4927- 4967(2009).
  • [6] Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vol. II, AWiley-Interscience Publ.,Wiley Classics Library Ed., 1996.
  • [7] Lee, H. and Suh, Y.J.: Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric. Math. Phys. Analysis and Geom. 23, 44 (2020).
  • [8] Pérez, J.D. and Suh, Y.J.: Derivatives of the shape operator of real hypersurfaces in the complex quadric. Results Math. 73, 126(2018).
  • [9] Reckziegel, H.: On the geometry of the complex quadric, in Geometry and Topology of Submanifolds VIII. World Scientific Publishing, Brussels/Nordfjordeid, River Edge, 302-315(1995).
  • [10] Smyth, B.: Differential geometry of complex hypersurfaces. Ann. of Math. 85, 246-266(1967).
  • [11] Suh, Y.J.: Real hypersurfaces in the complex quadric with Reeb parallel shape operator. International J. Math. 25, 1450059 17pp (2014).
  • [12] Suh, Y.J.:Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. in Math. 281, 886-905(2015) .
  • [13] Suh, Y.J.: Real hypersurfaces in complex quadric with harmonic curvature. J. Math. Pures Appl. 106, 393-410(2016).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Juan De Dios Perez

David Pérez-lópez Bu kişi benim

Erken Görünüm Tarihi 7 Nisan 2024
Yayımlanma Tarihi 23 Nisan 2024
Gönderilme Tarihi 12 Ocak 2024
Kabul Tarihi 15 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 1

Kaynak Göster

APA Perez, J. D. D., & Pérez-lópez, D. (2024). New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric. International Electronic Journal of Geometry, 17(1), 221-231. https://doi.org/10.36890/iejg.1466325
AMA Perez JDD, Pérez-lópez D. New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric. Int. Electron. J. Geom. Nisan 2024;17(1):221-231. doi:10.36890/iejg.1466325
Chicago Perez, Juan De Dios, ve David Pérez-lópez. “New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric”. International Electronic Journal of Geometry 17, sy. 1 (Nisan 2024): 221-31. https://doi.org/10.36890/iejg.1466325.
EndNote Perez JDD, Pérez-lópez D (01 Nisan 2024) New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric. International Electronic Journal of Geometry 17 1 221–231.
IEEE J. D. D. Perez ve D. Pérez-lópez, “New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric”, Int. Electron. J. Geom., c. 17, sy. 1, ss. 221–231, 2024, doi: 10.36890/iejg.1466325.
ISNAD Perez, Juan De Dios - Pérez-lópez, David. “New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric”. International Electronic Journal of Geometry 17/1 (Nisan 2024), 221-231. https://doi.org/10.36890/iejg.1466325.
JAMA Perez JDD, Pérez-lópez D. New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric. Int. Electron. J. Geom. 2024;17:221–231.
MLA Perez, Juan De Dios ve David Pérez-lópez. “New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric”. International Electronic Journal of Geometry, c. 17, sy. 1, 2024, ss. 221-3, doi:10.36890/iejg.1466325.
Vancouver Perez JDD, Pérez-lópez D. New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric. Int. Electron. J. Geom. 2024;17(1):221-3.