Araştırma Makalesi
BibTex RIS Kaynak Göster

Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds

Yıl 2024, Cilt: 17 Sayı: 2, 437 - 446, 27.10.2024
https://doi.org/10.36890/iejg.1393446

Öz

As a generalization of screen slant lightlike submersions, we introduce the notion of screen pseudo-slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. We give examples and prove a characterization theorem for the existence of such lightlike submersions. We also obtain integrability conditions of distributions involved in the definition of this class of lightlike submersions. Further, we find necessary and sufficient conditions for foliations determined by these distributions to be totally geodesic.

Kaynakça

  • [1] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and Its Applications. Kluwer Publisher, Dordrecht (1996).
  • [2] Duggal, K. L., Şahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhaüser Verlag, Basel (2010).
  • [3] Duggal, K. L., Şahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math. Sci., Article ID 57585 (2007)
  • [4] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16(7), 715-737 (1967).
  • [5] Gündüzalp, Y.: Neutral slant submersions in paracomplex geometry. Afr. Mat. 32(5-6), 1095-1110 (2021).
  • [6] Gündüzalp, Y.: Slant submersions in paracontact geometry. Hacet. J. Math. Stat. 49(2), 822-834 (2020).
  • [7] Kaushal, R., Kumar, R., Nagaich, R. K.: On the geometry of screen conformal submersions of semi-transversal lightlike submanifolds. Asian-Eur. J. Math. 14(8), 1-13 (2021).
  • [8] Noyan, E. Başarır, Gündüzalp, Y.: Proper semi-slant pseudo-Riemannian submersions in para-Kaehler geometry. Int. Electron. J. Geom. 15(2), 253-265 (2022).
  • [9] Noyan, E. Başarır, Gündüzalp, Y.: Proper bi-slant pseudo-Riemannian submersions whose total manifolds are para-Kaehler manifolds Honam Math. J. 44(3), 370-383 (2022).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13(4), 459-469 (1966).
  • [11] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press. London (1983).
  • [12] Prasad, R., Singh, P. K., Kumar, S.: Slant lightlike submersions from an indefinite nearly K¨ahler manifold into a lightlike manifold. J. Math. Comput. Sci. 8(2), 225-240 (2018).
  • [13] Sachdeva, R., Kumar, R., Bhatia, S. S.: Slant lightlike submersions from an indefinite almost Hermitian manifold into a lightlike manifold. Ukrainian Math. J. 68(7), 1097-1107 (2016).
  • [14] Şahin, B.: On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds. Mediterr. J. Math. 5(3), 273-284 (2008).
  • [15] Şahin, B., Gündüzalp, Y.: Submersions from semi-Riemannian manifolds onto lightlike manifolds. Hacet. J. Math. Stat. 39(1), 41-53 (2010).
  • [16] Shukla, S. S., Yadav, A.: Screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. Mediterr. J. Math. 13, 789-802 (2016).
  • [17] Shukla, S. S., Singh, V.: Screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Lobachevskii J. Math. 43(3), 697-708 (2022).
  • [18] Shukla, S. S., Singh, V.: Transversal lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Commun. Korean Math. Soc. 38(4), 1191-1213 (2023).
  • [19] Shukla, S. S., Singh, V.: Radical transversal screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Int. J. Geom. Methods Mod. Phys. 21(1), 1-21 (2024).
  • [20] Shukla, S. S., Omar, S.: Screen pseudo-slant lightlike submersions. J. Indones. Math. 29(1), 64-74 (2023).
  • [21] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 21(2), 271-290 (1969).
Yıl 2024, Cilt: 17 Sayı: 2, 437 - 446, 27.10.2024
https://doi.org/10.36890/iejg.1393446

Öz

Kaynakça

  • [1] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and Its Applications. Kluwer Publisher, Dordrecht (1996).
  • [2] Duggal, K. L., Şahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhaüser Verlag, Basel (2010).
  • [3] Duggal, K. L., Şahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math. Sci., Article ID 57585 (2007)
  • [4] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16(7), 715-737 (1967).
  • [5] Gündüzalp, Y.: Neutral slant submersions in paracomplex geometry. Afr. Mat. 32(5-6), 1095-1110 (2021).
  • [6] Gündüzalp, Y.: Slant submersions in paracontact geometry. Hacet. J. Math. Stat. 49(2), 822-834 (2020).
  • [7] Kaushal, R., Kumar, R., Nagaich, R. K.: On the geometry of screen conformal submersions of semi-transversal lightlike submanifolds. Asian-Eur. J. Math. 14(8), 1-13 (2021).
  • [8] Noyan, E. Başarır, Gündüzalp, Y.: Proper semi-slant pseudo-Riemannian submersions in para-Kaehler geometry. Int. Electron. J. Geom. 15(2), 253-265 (2022).
  • [9] Noyan, E. Başarır, Gündüzalp, Y.: Proper bi-slant pseudo-Riemannian submersions whose total manifolds are para-Kaehler manifolds Honam Math. J. 44(3), 370-383 (2022).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13(4), 459-469 (1966).
  • [11] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press. London (1983).
  • [12] Prasad, R., Singh, P. K., Kumar, S.: Slant lightlike submersions from an indefinite nearly K¨ahler manifold into a lightlike manifold. J. Math. Comput. Sci. 8(2), 225-240 (2018).
  • [13] Sachdeva, R., Kumar, R., Bhatia, S. S.: Slant lightlike submersions from an indefinite almost Hermitian manifold into a lightlike manifold. Ukrainian Math. J. 68(7), 1097-1107 (2016).
  • [14] Şahin, B.: On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds. Mediterr. J. Math. 5(3), 273-284 (2008).
  • [15] Şahin, B., Gündüzalp, Y.: Submersions from semi-Riemannian manifolds onto lightlike manifolds. Hacet. J. Math. Stat. 39(1), 41-53 (2010).
  • [16] Shukla, S. S., Yadav, A.: Screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. Mediterr. J. Math. 13, 789-802 (2016).
  • [17] Shukla, S. S., Singh, V.: Screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Lobachevskii J. Math. 43(3), 697-708 (2022).
  • [18] Shukla, S. S., Singh, V.: Transversal lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Commun. Korean Math. Soc. 38(4), 1191-1213 (2023).
  • [19] Shukla, S. S., Singh, V.: Radical transversal screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Int. J. Geom. Methods Mod. Phys. 21(1), 1-21 (2024).
  • [20] Shukla, S. S., Omar, S.: Screen pseudo-slant lightlike submersions. J. Indones. Math. 29(1), 64-74 (2023).
  • [21] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 21(2), 271-290 (1969).
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Shiv Sharma Shukla 0000-0003-2759-6097

Vipul Singh 0000-0003-3842-0345

Erken Görünüm Tarihi 19 Eylül 2024
Yayımlanma Tarihi 27 Ekim 2024
Gönderilme Tarihi 20 Kasım 2023
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Shukla, S. S., & Singh, V. (2024). Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. International Electronic Journal of Geometry, 17(2), 437-446. https://doi.org/10.36890/iejg.1393446
AMA Shukla SS, Singh V. Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. Int. Electron. J. Geom. Ekim 2024;17(2):437-446. doi:10.36890/iejg.1393446
Chicago Shukla, Shiv Sharma, ve Vipul Singh. “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”. International Electronic Journal of Geometry 17, sy. 2 (Ekim 2024): 437-46. https://doi.org/10.36890/iejg.1393446.
EndNote Shukla SS, Singh V (01 Ekim 2024) Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. International Electronic Journal of Geometry 17 2 437–446.
IEEE S. S. Shukla ve V. Singh, “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”, Int. Electron. J. Geom., c. 17, sy. 2, ss. 437–446, 2024, doi: 10.36890/iejg.1393446.
ISNAD Shukla, Shiv Sharma - Singh, Vipul. “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”. International Electronic Journal of Geometry 17/2 (Ekim 2024), 437-446. https://doi.org/10.36890/iejg.1393446.
JAMA Shukla SS, Singh V. Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. Int. Electron. J. Geom. 2024;17:437–446.
MLA Shukla, Shiv Sharma ve Vipul Singh. “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”. International Electronic Journal of Geometry, c. 17, sy. 2, 2024, ss. 437-46, doi:10.36890/iejg.1393446.
Vancouver Shukla SS, Singh V. Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. Int. Electron. J. Geom. 2024;17(2):437-46.