Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Link to Helices in Euclidean $3$-Space

Yıl 2024, Cilt: 17 Sayı: 2, 519 - 530, 27.10.2024
https://doi.org/10.36890/iejg.1393863

Öz

In this paper, we introduce a novel approach for obtaining the parametric expression and description of a general helix, slant helix, and Darboux helix. The new method involves projecting $\alpha $ onto a plane passing through $\alpha \left( 0\right) $ and orthogonal to the unit axis vector $U$ in order to determine the position vector of the general helix $\alpha $. The position vector of the helix with the plane curve $\gamma $ and its axis $U$ is then established. Additionally, a relation between the curvatures of $\alpha $ and $\gamma $ is presented. The proposed technique is then applied to derive the parametric representation of a slant helix and Darboux helix, followed by the provision of various examples obtained through the application of this methodology.

Kaynakça

  • [1] Ali, A.T.: Position vectors of general helices in Euclidean 3-space. Bull. Math. Anal. Appl. 3(2), 198–205 (2011).
  • [2] Ali, A.T.: Position vectors of slant helices in Euclidean 3-space. J. Egyptian Math. Soc. 20(1), 1–6 (2012).
  • [3] Boyer, C.B.: A history of mathematics. John Wiley & Sons, Inc., New York (1991).
  • [4] Şenol, A.: General helices in space forms. Ph.D. Thesis, Ankara University (2008).
  • [5] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turkish J. Math. 28(2), 153–163 (2004).
  • [6] O’Neill, B.: Elementary differential geometry. (2nd edition) Elsevier/Academic Press, Amsterdam (2006).
  • [7] Scofield, P.D.: Curves of constant precession. Amer. Math. Monthly 102(6), 531–537 (1995).
  • [8] Struik, D.J.: Lectures on Classical Differential Geometry. Addison-Wesley Press, Inc., Cambridge, MA (1950).
Yıl 2024, Cilt: 17 Sayı: 2, 519 - 530, 27.10.2024
https://doi.org/10.36890/iejg.1393863

Öz

Kaynakça

  • [1] Ali, A.T.: Position vectors of general helices in Euclidean 3-space. Bull. Math. Anal. Appl. 3(2), 198–205 (2011).
  • [2] Ali, A.T.: Position vectors of slant helices in Euclidean 3-space. J. Egyptian Math. Soc. 20(1), 1–6 (2012).
  • [3] Boyer, C.B.: A history of mathematics. John Wiley & Sons, Inc., New York (1991).
  • [4] Şenol, A.: General helices in space forms. Ph.D. Thesis, Ankara University (2008).
  • [5] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turkish J. Math. 28(2), 153–163 (2004).
  • [6] O’Neill, B.: Elementary differential geometry. (2nd edition) Elsevier/Academic Press, Amsterdam (2006).
  • [7] Scofield, P.D.: Curves of constant precession. Amer. Math. Monthly 102(6), 531–537 (1995).
  • [8] Struik, D.J.: Lectures on Classical Differential Geometry. Addison-Wesley Press, Inc., Cambridge, MA (1950).
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Ufuk Öztürk

Halise Kılıçparlar

Esra Betül Koç Öztürk

Erken Görünüm Tarihi 23 Eylül 2024
Yayımlanma Tarihi 27 Ekim 2024
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 14 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Öztürk, U., Kılıçparlar, H., & Koç Öztürk, E. B. (2024). A New Link to Helices in Euclidean $3$-Space. International Electronic Journal of Geometry, 17(2), 519-530. https://doi.org/10.36890/iejg.1393863
AMA Öztürk U, Kılıçparlar H, Koç Öztürk EB. A New Link to Helices in Euclidean $3$-Space. Int. Electron. J. Geom. Ekim 2024;17(2):519-530. doi:10.36890/iejg.1393863
Chicago Öztürk, Ufuk, Halise Kılıçparlar, ve Esra Betül Koç Öztürk. “A New Link to Helices in Euclidean $3$-Space”. International Electronic Journal of Geometry 17, sy. 2 (Ekim 2024): 519-30. https://doi.org/10.36890/iejg.1393863.
EndNote Öztürk U, Kılıçparlar H, Koç Öztürk EB (01 Ekim 2024) A New Link to Helices in Euclidean $3$-Space. International Electronic Journal of Geometry 17 2 519–530.
IEEE U. Öztürk, H. Kılıçparlar, ve E. B. Koç Öztürk, “A New Link to Helices in Euclidean $3$-Space”, Int. Electron. J. Geom., c. 17, sy. 2, ss. 519–530, 2024, doi: 10.36890/iejg.1393863.
ISNAD Öztürk, Ufuk vd. “A New Link to Helices in Euclidean $3$-Space”. International Electronic Journal of Geometry 17/2 (Ekim 2024), 519-530. https://doi.org/10.36890/iejg.1393863.
JAMA Öztürk U, Kılıçparlar H, Koç Öztürk EB. A New Link to Helices in Euclidean $3$-Space. Int. Electron. J. Geom. 2024;17:519–530.
MLA Öztürk, Ufuk vd. “A New Link to Helices in Euclidean $3$-Space”. International Electronic Journal of Geometry, c. 17, sy. 2, 2024, ss. 519-30, doi:10.36890/iejg.1393863.
Vancouver Öztürk U, Kılıçparlar H, Koç Öztürk EB. A New Link to Helices in Euclidean $3$-Space. Int. Electron. J. Geom. 2024;17(2):519-30.