Year 2025,
Volume: 18 Issue: 2, 384 - 395
Marius Landry Foka
,
Michel Bertrand Ngaha Djiadeu
,
Thomas Bouetou Bouetou
References
-
Azami, S.: Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections.
Journal of Nonlinear Mathematical Physics. 30 (2), 1–33 (2023). https://doi.org/10.1007/s44198-023-00134-4
-
Borges, V.: On complete gradient Schouten solitons. Nonlinear Analysis. 221, 112883 (2022). https://doi.org/10.1016/j.na.2022.
112883
-
Buttsworth, T.: The prescribed Ricci curvature problem on three-dimensional unimodular Lie groups. Mathematische Nachrichten. 292 (4),
747–759 (2019). https://doi.org/10.1002/mana.201800052
-
Buttsworth, T., Pulemotov, A.: The prescribed Ricci curvature problem for homogeneous metrics. In: Dearricott, O., Tuschmann, W.,
Nikolayevsky, Y., Leistner, T., Crowley, D. (eds.), Differential Geometry in the Large. London Mathematical Society Lecture Note Series.
Cambridge University Press. 169–192 (2020). https://doi.org/10.1017/9781108884136.010
-
Calvino-Louzao, E., Hervella, L. M., Seoane-Bascoy, J., Vázquez-Lorenzo, R.: Homogeneous Cotton solitons. Journal of Physics A:
Mathematical and Theoretical. 46, 285204 (2013). https://doi.org/10.1088/1751-8113/46/28/285204
-
Djiadeu Ngaha, M. B., Boucetta, M., Wouafo Kamga, J.: The signature of the Ricci curvature of left-invariant Riemannian metrics on nilpotent
Lie groups. Differential Geometry and its Applications. 47, 26–42 (2016). https://doi.org/10.1016/j.difgeo.2016.03.004
-
Foka, M. L., Mbatakou, S. J., Pefoukeu, R. N., Djiadeu Ngaha, M. B., Bouetou, T. B.: The prescribed Ricci curvature problem on fivedimensional
nilpotent Lie groups. International Journal of Geometric Methods in Modern Physics. 22 (9), 2550055-15 (2025). https:
//doi.org/10.1142/S0219887825500550
-
Friedan, D. H.: Nonlinear models in 2 + ε dimensions. Annals of Physics. 163 (2), 318–419 (1985).
-
Hamilton, R.: Three-manifolds with positive Ricci curvature. Journal of Differential Geometry. 17, 255–306 (1982).
-
Hamilton, R.: The Ricci curvature equation. In: Chern, S.-S. (ed.), Seminar on Nonlinear Partial Differential Equations. 47–72 (1985).
-
Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the minimality of the corresponding submanifolds. International Journal of
Mathematics. 28 (6), 1750048 (2017).
-
Hashinaga, T., Tamaru, H., Terada, K.: Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. Journal of the
Mathematical Society of Japan. 68 (2), 669–684 (2016).
-
Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling. Manuscripta Mathematica.
135 (1), 229–243 (2011).
-
Lauret, J.: Ricci soliton homogeneous nilmanifolds. Mathematische Annalen. 319, 715–733 (2001).
-
Liu, S.: Algebraic Schouten solitons of three-dimensional Lorentzian Lie groups. Symmetry. 15 (4), 866 (2023). https://doi.org/10.3390/
sym15040866
-
Milnor, J.: Curvatures of left invariant metrics on Lie groups. Advances in Mathematics. 21 (3), 293–329 (1976).
-
Salimi Moghaddam, H. R.: An algebraic proof of the classification of five-dimensional nilsolitons. Journal of the Iranian Mathematical Society. 5
(2), 243–252 (2024). https://doi.org/10.30504/jims.2024.463565.1189
-
Pulemotov, A.: Metrics with prescribed Ricci curvature near the boundary of a manifold. Mathematische Annalen. 357 (3), 969–986 (2013).
https://doi.org/10.1007/s00208-013-0929-y
-
Pulemotov, A.: Metrics with prescribed Ricci curvature on homogeneous spaces. Journal of Geometry and Physics. 106, 275–283 (2016).
https://doi.org/10.1016/j.geomphys.2016.04.003
-
Wears, T. H.: On algebraic solitons for geometric evolution equations on three-dimensional Lie groups. Tbilisi Mathematical Journal. 9 (2), 33–58
(2016). https://doi.org/10.1515/tmj-2016-0018
Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups
Year 2025,
Volume: 18 Issue: 2, 384 - 395
Marius Landry Foka
,
Michel Bertrand Ngaha Djiadeu
,
Thomas Bouetou Bouetou
Abstract
The prescribed Ricci curvature problem consists of finding a Riemannian metric $g$ to satisfy the equation $Ric(g) = T$, for some fixed symmetric $(0,2)$-tensor field $T$ on a differential manifold $M$. In this paper, we define Schouten-like metric as a particular solution of a prescribed Ricci curvature problem, and we classify them on five-dimensional nilpotent Lie groups by establishing a link with algebraic Schouten solitons.
References
-
Azami, S.: Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections.
Journal of Nonlinear Mathematical Physics. 30 (2), 1–33 (2023). https://doi.org/10.1007/s44198-023-00134-4
-
Borges, V.: On complete gradient Schouten solitons. Nonlinear Analysis. 221, 112883 (2022). https://doi.org/10.1016/j.na.2022.
112883
-
Buttsworth, T.: The prescribed Ricci curvature problem on three-dimensional unimodular Lie groups. Mathematische Nachrichten. 292 (4),
747–759 (2019). https://doi.org/10.1002/mana.201800052
-
Buttsworth, T., Pulemotov, A.: The prescribed Ricci curvature problem for homogeneous metrics. In: Dearricott, O., Tuschmann, W.,
Nikolayevsky, Y., Leistner, T., Crowley, D. (eds.), Differential Geometry in the Large. London Mathematical Society Lecture Note Series.
Cambridge University Press. 169–192 (2020). https://doi.org/10.1017/9781108884136.010
-
Calvino-Louzao, E., Hervella, L. M., Seoane-Bascoy, J., Vázquez-Lorenzo, R.: Homogeneous Cotton solitons. Journal of Physics A:
Mathematical and Theoretical. 46, 285204 (2013). https://doi.org/10.1088/1751-8113/46/28/285204
-
Djiadeu Ngaha, M. B., Boucetta, M., Wouafo Kamga, J.: The signature of the Ricci curvature of left-invariant Riemannian metrics on nilpotent
Lie groups. Differential Geometry and its Applications. 47, 26–42 (2016). https://doi.org/10.1016/j.difgeo.2016.03.004
-
Foka, M. L., Mbatakou, S. J., Pefoukeu, R. N., Djiadeu Ngaha, M. B., Bouetou, T. B.: The prescribed Ricci curvature problem on fivedimensional
nilpotent Lie groups. International Journal of Geometric Methods in Modern Physics. 22 (9), 2550055-15 (2025). https:
//doi.org/10.1142/S0219887825500550
-
Friedan, D. H.: Nonlinear models in 2 + ε dimensions. Annals of Physics. 163 (2), 318–419 (1985).
-
Hamilton, R.: Three-manifolds with positive Ricci curvature. Journal of Differential Geometry. 17, 255–306 (1982).
-
Hamilton, R.: The Ricci curvature equation. In: Chern, S.-S. (ed.), Seminar on Nonlinear Partial Differential Equations. 47–72 (1985).
-
Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the minimality of the corresponding submanifolds. International Journal of
Mathematics. 28 (6), 1750048 (2017).
-
Hashinaga, T., Tamaru, H., Terada, K.: Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. Journal of the
Mathematical Society of Japan. 68 (2), 669–684 (2016).
-
Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling. Manuscripta Mathematica.
135 (1), 229–243 (2011).
-
Lauret, J.: Ricci soliton homogeneous nilmanifolds. Mathematische Annalen. 319, 715–733 (2001).
-
Liu, S.: Algebraic Schouten solitons of three-dimensional Lorentzian Lie groups. Symmetry. 15 (4), 866 (2023). https://doi.org/10.3390/
sym15040866
-
Milnor, J.: Curvatures of left invariant metrics on Lie groups. Advances in Mathematics. 21 (3), 293–329 (1976).
-
Salimi Moghaddam, H. R.: An algebraic proof of the classification of five-dimensional nilsolitons. Journal of the Iranian Mathematical Society. 5
(2), 243–252 (2024). https://doi.org/10.30504/jims.2024.463565.1189
-
Pulemotov, A.: Metrics with prescribed Ricci curvature near the boundary of a manifold. Mathematische Annalen. 357 (3), 969–986 (2013).
https://doi.org/10.1007/s00208-013-0929-y
-
Pulemotov, A.: Metrics with prescribed Ricci curvature on homogeneous spaces. Journal of Geometry and Physics. 106, 275–283 (2016).
https://doi.org/10.1016/j.geomphys.2016.04.003
-
Wears, T. H.: On algebraic solitons for geometric evolution equations on three-dimensional Lie groups. Tbilisi Mathematical Journal. 9 (2), 33–58
(2016). https://doi.org/10.1515/tmj-2016-0018