Year 2025,
Volume: 18 Issue: 2, 475 - 487
Kazuhiko Takano
,
Adela Mihai
,
Ion Mihai
,
M. Hasan Shahid
References
-
Abe, N., Hasegawa, K.: An affine submersion with horizontal distribution and its applications. Differential Geom. Appl. 14, 235–250 (2001).
https://doi.org/10.1016/S0926-2245(01)00034-1
-
Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28, Springer, Berlin (1985).
-
Amari, S., Nagaoka, H.: Methods of Information Geometry. Transl. Math. Monogr., Amer. Math. Soc. 191 (2000).
-
Aytimur, H., Kon, M., Mihai, A., Özgür, C., Takano, K.: Chen inequalities for statistical submanifolds of Kaehler-like statistical manifolds.
Mathematics 7 (12), 1202 (2019). https://doi.org/10.3390/math7121202
-
Aytimur, H., Mihai, A., Özgür, C.: Relations between extrinsic and intrinsic invariants of statistical submanifolds in Sasaki-like statistical manifolds.
Mathematics 9 (11), 1285 (2021). https://doi.org/10.3390/math9111285
-
Aytimur, H., Özgür, C.: On cosymplectic-like statistical submersions. Mediterr. J. Math. 16, 70 (2019). https://doi.org/10.1007/s00009-019-
1332-z
-
Besse, A.L.: Einstein Manifolds, Springer-Verlag, Berlin Heidelberg (1987).
-
Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds. Geometry of Cauchy-Riemann Submanifolds, Editors: S.
Dragomir, M.H. Shahid, F. Al-Solamy, 179–215, Springer, Singapore (2016).
-
Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 715-737 (1967).
-
Kazan, S., Takano, K.: Anti-invariant holomorphic statistical submersions. Results Math. 78, 128 (2023). https://doi.org/10.1007/s00025-023-
01904-8
-
Kurose, T.: Dual connections and affine geometry. Math. Z. 203, 115-121 (1990). https://doi.org/10.1007/BF02570725
-
Noguchi, M.: Geometry of statistical manifolds. Differential Geom. Appl. 2, 197-222 (1992). https://doi.org/10.1016/0926-2245(92)90011-B
-
Nomizu, K., Sasaki, S.: Affine Differential Geometry, Cambridge University Press (1994).
-
O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 458-469 (1966).
-
O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press, New York (1983).
-
Takano, K.: Statistical manifolds with almost complex structures and its statistical submersions. Tensor N. S. 65, 128-142 (2004).
-
Takano, K.: Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 85, 171–187 (2006).
https://doi.org/10.1007/s00022-006-0052-2
-
Takano, K., Erkan, E., Gülbahar, M.: Locally product-like statistical submersions. Turkish J. Math. 47 (2), 846-869 (2023).
https://doi.org/10.55730/1300-0098.3397
-
Takano, K., Kazan, S.: Statistical submersions with parallel almost complex structures. Mediterr. J. Math. 21, 109 (2024).
https://doi.org/10.1007/s00009-024-02621-4
-
Vîlcu, G.-E.: Almost product structures on statistical manifolds and para-Kähler-like statistical submersions. Bull. Sci. Math. 171, 103018 (2021).
https://doi.org/10.1016/j.bulsci.2021.103018
-
Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Mathematics. World Scientific Publishing Co., Singapore (1984).
Invariant Holomorphic Statistical Submersions
Year 2025,
Volume: 18 Issue: 2, 475 - 487
Kazuhiko Takano
,
Adela Mihai
,
Ion Mihai
,
M. Hasan Shahid
Abstract
The notion of a statistical submersion is due to Abe and Hasegawa. In particular, one of the present authors defined holomorphic statistical submersions. In a joint paper with S. Kazan, he studied anti-invariant holomorphic statistical submersions. In the present paper, we investigate invariant statistical submersions and give their geometric properties. Two examples of such submersions are provided.
References
-
Abe, N., Hasegawa, K.: An affine submersion with horizontal distribution and its applications. Differential Geom. Appl. 14, 235–250 (2001).
https://doi.org/10.1016/S0926-2245(01)00034-1
-
Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28, Springer, Berlin (1985).
-
Amari, S., Nagaoka, H.: Methods of Information Geometry. Transl. Math. Monogr., Amer. Math. Soc. 191 (2000).
-
Aytimur, H., Kon, M., Mihai, A., Özgür, C., Takano, K.: Chen inequalities for statistical submanifolds of Kaehler-like statistical manifolds.
Mathematics 7 (12), 1202 (2019). https://doi.org/10.3390/math7121202
-
Aytimur, H., Mihai, A., Özgür, C.: Relations between extrinsic and intrinsic invariants of statistical submanifolds in Sasaki-like statistical manifolds.
Mathematics 9 (11), 1285 (2021). https://doi.org/10.3390/math9111285
-
Aytimur, H., Özgür, C.: On cosymplectic-like statistical submersions. Mediterr. J. Math. 16, 70 (2019). https://doi.org/10.1007/s00009-019-
1332-z
-
Besse, A.L.: Einstein Manifolds, Springer-Verlag, Berlin Heidelberg (1987).
-
Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds. Geometry of Cauchy-Riemann Submanifolds, Editors: S.
Dragomir, M.H. Shahid, F. Al-Solamy, 179–215, Springer, Singapore (2016).
-
Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 715-737 (1967).
-
Kazan, S., Takano, K.: Anti-invariant holomorphic statistical submersions. Results Math. 78, 128 (2023). https://doi.org/10.1007/s00025-023-
01904-8
-
Kurose, T.: Dual connections and affine geometry. Math. Z. 203, 115-121 (1990). https://doi.org/10.1007/BF02570725
-
Noguchi, M.: Geometry of statistical manifolds. Differential Geom. Appl. 2, 197-222 (1992). https://doi.org/10.1016/0926-2245(92)90011-B
-
Nomizu, K., Sasaki, S.: Affine Differential Geometry, Cambridge University Press (1994).
-
O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 458-469 (1966).
-
O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press, New York (1983).
-
Takano, K.: Statistical manifolds with almost complex structures and its statistical submersions. Tensor N. S. 65, 128-142 (2004).
-
Takano, K.: Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 85, 171–187 (2006).
https://doi.org/10.1007/s00022-006-0052-2
-
Takano, K., Erkan, E., Gülbahar, M.: Locally product-like statistical submersions. Turkish J. Math. 47 (2), 846-869 (2023).
https://doi.org/10.55730/1300-0098.3397
-
Takano, K., Kazan, S.: Statistical submersions with parallel almost complex structures. Mediterr. J. Math. 21, 109 (2024).
https://doi.org/10.1007/s00009-024-02621-4
-
Vîlcu, G.-E.: Almost product structures on statistical manifolds and para-Kähler-like statistical submersions. Bull. Sci. Math. 171, 103018 (2021).
https://doi.org/10.1016/j.bulsci.2021.103018
-
Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Mathematics. World Scientific Publishing Co., Singapore (1984).