Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 475 - 487

Abstract

References

  • Abe, N., Hasegawa, K.: An affine submersion with horizontal distribution and its applications. Differential Geom. Appl. 14, 235–250 (2001). https://doi.org/10.1016/S0926-2245(01)00034-1
  • Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28, Springer, Berlin (1985).
  • Amari, S., Nagaoka, H.: Methods of Information Geometry. Transl. Math. Monogr., Amer. Math. Soc. 191 (2000).
  • Aytimur, H., Kon, M., Mihai, A., Özgür, C., Takano, K.: Chen inequalities for statistical submanifolds of Kaehler-like statistical manifolds. Mathematics 7 (12), 1202 (2019). https://doi.org/10.3390/math7121202
  • Aytimur, H., Mihai, A., Özgür, C.: Relations between extrinsic and intrinsic invariants of statistical submanifolds in Sasaki-like statistical manifolds. Mathematics 9 (11), 1285 (2021). https://doi.org/10.3390/math9111285
  • Aytimur, H., Özgür, C.: On cosymplectic-like statistical submersions. Mediterr. J. Math. 16, 70 (2019). https://doi.org/10.1007/s00009-019- 1332-z
  • Besse, A.L.: Einstein Manifolds, Springer-Verlag, Berlin Heidelberg (1987).
  • Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds. Geometry of Cauchy-Riemann Submanifolds, Editors: S. Dragomir, M.H. Shahid, F. Al-Solamy, 179–215, Springer, Singapore (2016).
  • Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 715-737 (1967).
  • Kazan, S., Takano, K.: Anti-invariant holomorphic statistical submersions. Results Math. 78, 128 (2023). https://doi.org/10.1007/s00025-023- 01904-8
  • Kurose, T.: Dual connections and affine geometry. Math. Z. 203, 115-121 (1990). https://doi.org/10.1007/BF02570725
  • Noguchi, M.: Geometry of statistical manifolds. Differential Geom. Appl. 2, 197-222 (1992). https://doi.org/10.1016/0926-2245(92)90011-B
  • Nomizu, K., Sasaki, S.: Affine Differential Geometry, Cambridge University Press (1994).
  • O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 458-469 (1966).
  • O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press, New York (1983).
  • Takano, K.: Statistical manifolds with almost complex structures and its statistical submersions. Tensor N. S. 65, 128-142 (2004).
  • Takano, K.: Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 85, 171–187 (2006). https://doi.org/10.1007/s00022-006-0052-2
  • Takano, K., Erkan, E., Gülbahar, M.: Locally product-like statistical submersions. Turkish J. Math. 47 (2), 846-869 (2023). https://doi.org/10.55730/1300-0098.3397
  • Takano, K., Kazan, S.: Statistical submersions with parallel almost complex structures. Mediterr. J. Math. 21, 109 (2024). https://doi.org/10.1007/s00009-024-02621-4
  • Vîlcu, G.-E.: Almost product structures on statistical manifolds and para-Kähler-like statistical submersions. Bull. Sci. Math. 171, 103018 (2021). https://doi.org/10.1016/j.bulsci.2021.103018
  • Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Mathematics. World Scientific Publishing Co., Singapore (1984).

Invariant Holomorphic Statistical Submersions

Year 2025, Volume: 18 Issue: 2, 475 - 487

Abstract

The notion of a statistical submersion is due to Abe and Hasegawa. In particular, one of the present authors defined holomorphic statistical submersions. In a joint paper with S. Kazan, he studied anti-invariant holomorphic statistical submersions. In the present paper, we investigate invariant statistical submersions and give their geometric properties. Two examples of such submersions are provided.

References

  • Abe, N., Hasegawa, K.: An affine submersion with horizontal distribution and its applications. Differential Geom. Appl. 14, 235–250 (2001). https://doi.org/10.1016/S0926-2245(01)00034-1
  • Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28, Springer, Berlin (1985).
  • Amari, S., Nagaoka, H.: Methods of Information Geometry. Transl. Math. Monogr., Amer. Math. Soc. 191 (2000).
  • Aytimur, H., Kon, M., Mihai, A., Özgür, C., Takano, K.: Chen inequalities for statistical submanifolds of Kaehler-like statistical manifolds. Mathematics 7 (12), 1202 (2019). https://doi.org/10.3390/math7121202
  • Aytimur, H., Mihai, A., Özgür, C.: Relations between extrinsic and intrinsic invariants of statistical submanifolds in Sasaki-like statistical manifolds. Mathematics 9 (11), 1285 (2021). https://doi.org/10.3390/math9111285
  • Aytimur, H., Özgür, C.: On cosymplectic-like statistical submersions. Mediterr. J. Math. 16, 70 (2019). https://doi.org/10.1007/s00009-019- 1332-z
  • Besse, A.L.: Einstein Manifolds, Springer-Verlag, Berlin Heidelberg (1987).
  • Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds. Geometry of Cauchy-Riemann Submanifolds, Editors: S. Dragomir, M.H. Shahid, F. Al-Solamy, 179–215, Springer, Singapore (2016).
  • Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 715-737 (1967).
  • Kazan, S., Takano, K.: Anti-invariant holomorphic statistical submersions. Results Math. 78, 128 (2023). https://doi.org/10.1007/s00025-023- 01904-8
  • Kurose, T.: Dual connections and affine geometry. Math. Z. 203, 115-121 (1990). https://doi.org/10.1007/BF02570725
  • Noguchi, M.: Geometry of statistical manifolds. Differential Geom. Appl. 2, 197-222 (1992). https://doi.org/10.1016/0926-2245(92)90011-B
  • Nomizu, K., Sasaki, S.: Affine Differential Geometry, Cambridge University Press (1994).
  • O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 458-469 (1966).
  • O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press, New York (1983).
  • Takano, K.: Statistical manifolds with almost complex structures and its statistical submersions. Tensor N. S. 65, 128-142 (2004).
  • Takano, K.: Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 85, 171–187 (2006). https://doi.org/10.1007/s00022-006-0052-2
  • Takano, K., Erkan, E., Gülbahar, M.: Locally product-like statistical submersions. Turkish J. Math. 47 (2), 846-869 (2023). https://doi.org/10.55730/1300-0098.3397
  • Takano, K., Kazan, S.: Statistical submersions with parallel almost complex structures. Mediterr. J. Math. 21, 109 (2024). https://doi.org/10.1007/s00009-024-02621-4
  • Vîlcu, G.-E.: Almost product structures on statistical manifolds and para-Kähler-like statistical submersions. Bull. Sci. Math. 171, 103018 (2021). https://doi.org/10.1016/j.bulsci.2021.103018
  • Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Mathematics. World Scientific Publishing Co., Singapore (1984).
There are 21 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Kazuhiko Takano 0000-0002-5247-2531

Adela Mihai 0000-0003-2033-8394

Ion Mihai 0000-0003-3782-2983

M. Hasan Shahid 0000-0002-3646-4697

Early Pub Date October 13, 2025
Publication Date October 17, 2025
Submission Date July 2, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Takano, K., Mihai, A., Mihai, I., Shahid, M. H. (2025). Invariant Holomorphic Statistical Submersions. International Electronic Journal of Geometry, 18(2), 475-487.
AMA Takano K, Mihai A, Mihai I, Shahid MH. Invariant Holomorphic Statistical Submersions. Int. Electron. J. Geom. October 2025;18(2):475-487.
Chicago Takano, Kazuhiko, Adela Mihai, Ion Mihai, and M. Hasan Shahid. “Invariant Holomorphic Statistical Submersions”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 475-87.
EndNote Takano K, Mihai A, Mihai I, Shahid MH (October 1, 2025) Invariant Holomorphic Statistical Submersions. International Electronic Journal of Geometry 18 2 475–487.
IEEE K. Takano, A. Mihai, I. Mihai, and M. H. Shahid, “Invariant Holomorphic Statistical Submersions”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 475–487, 2025.
ISNAD Takano, Kazuhiko et al. “Invariant Holomorphic Statistical Submersions”. International Electronic Journal of Geometry 18/2 (October2025), 475-487.
JAMA Takano K, Mihai A, Mihai I, Shahid MH. Invariant Holomorphic Statistical Submersions. Int. Electron. J. Geom. 2025;18:475–487.
MLA Takano, Kazuhiko et al. “Invariant Holomorphic Statistical Submersions”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 475-87.
Vancouver Takano K, Mihai A, Mihai I, Shahid MH. Invariant Holomorphic Statistical Submersions. Int. Electron. J. Geom. 2025;18(2):475-87.