BibTex RIS Cite

A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model

Year 2009, Volume: 1 Issue: 1, 33 - 49, 01.04.2009

Abstract

This paper uses information theoretic methods to introduce a new class of probability
distributions and estimators for competing explanations of the data in the binary choice
model. No explicit parameterization of the function connecting the data to the Bernoulli
probabilities is stated in the specification of the statistical model. A large class of
probability density functions emerges including the conventional logit model. The new
class of statistical models and estimators requires minimal a priori model structure and
non-sample information, and provides a range of model and estimator extensions. An
empirical example is included to reflect the applicability of these methods.

References

  • Cosslett, S.R. (1983). Distribution-Free Maximum Likelihood Estimation of the Binary Choice Model. Econometrica, 51, 765-782.
  • Cover, T.M. and G.A. Thomas (2006). Elements of Information Theory, New York: Wiley Interscience, 2nd edition.
  • Cressie, N. and T. Read (1984). Multinomial Goodness of Fit Tests. Journal of the Royal Statistical Society, Series B 46, 440-464.
  • Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of Econometrics, 58, 71-120.
  • Judge, G., R. Mittelhammer, and D. Miller (2006). “Estimating the link function in multinomial response models under endogeneity”, (in: Jean-Paul Chavas -Ed., Volume in Honor of Stanley Johnson), University of California Press.
  • Klein, R.W. and R.H. Spady (1993). An Efficient Semiparametric Estimator for Binary Response Models. Econometrica, 61 (2), 387-421.
  • Maddala, G.S. (1983). “Limited Dependent and Qualitative Variables in Econometrics”, (in: Econometric Society Monograph No. 3), Cambridge University Press, Cambridge.
  • McCullough, P. and J.A. Nelder (1995). Generalized Linear Models, New York: Chapman and Hall.
  • McFadden, D. (1984). “Qualitative Response Models,” (in: Z. Griliches and M. Intriligator - Ed., Handbook of Econometrics 2), Amsterdam, North Holland, 1395-1457.
  • McFadden, D. (1974). “Conditional Logit Analysis of Qualitative Choice Behavior”, (in: P. Zarembka -Ed., Frontiers of Econometrics), New York: Academic Press, 105-142.
  • Mittelhammer, R., G. Judge, and D. Miller (2000). Econometric Foundations, New York: Cambridge University Press.
  • Read, T.R. and N.A. Cressie (1988). Goodness of Fit Statistics for Discrete Multivariate Data, New York: Springer Verlag.
  • Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics, New York: John Wiley & Sons.
  • Train, K. (2003). Discrete Choice Methods with Simulation, New York: Cambridge University Press.
Year 2009, Volume: 1 Issue: 1, 33 - 49, 01.04.2009

Abstract

References

  • Cosslett, S.R. (1983). Distribution-Free Maximum Likelihood Estimation of the Binary Choice Model. Econometrica, 51, 765-782.
  • Cover, T.M. and G.A. Thomas (2006). Elements of Information Theory, New York: Wiley Interscience, 2nd edition.
  • Cressie, N. and T. Read (1984). Multinomial Goodness of Fit Tests. Journal of the Royal Statistical Society, Series B 46, 440-464.
  • Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of Econometrics, 58, 71-120.
  • Judge, G., R. Mittelhammer, and D. Miller (2006). “Estimating the link function in multinomial response models under endogeneity”, (in: Jean-Paul Chavas -Ed., Volume in Honor of Stanley Johnson), University of California Press.
  • Klein, R.W. and R.H. Spady (1993). An Efficient Semiparametric Estimator for Binary Response Models. Econometrica, 61 (2), 387-421.
  • Maddala, G.S. (1983). “Limited Dependent and Qualitative Variables in Econometrics”, (in: Econometric Society Monograph No. 3), Cambridge University Press, Cambridge.
  • McCullough, P. and J.A. Nelder (1995). Generalized Linear Models, New York: Chapman and Hall.
  • McFadden, D. (1984). “Qualitative Response Models,” (in: Z. Griliches and M. Intriligator - Ed., Handbook of Econometrics 2), Amsterdam, North Holland, 1395-1457.
  • McFadden, D. (1974). “Conditional Logit Analysis of Qualitative Choice Behavior”, (in: P. Zarembka -Ed., Frontiers of Econometrics), New York: Academic Press, 105-142.
  • Mittelhammer, R., G. Judge, and D. Miller (2000). Econometric Foundations, New York: Cambridge University Press.
  • Read, T.R. and N.A. Cressie (1988). Goodness of Fit Statistics for Discrete Multivariate Data, New York: Springer Verlag.
  • Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics, New York: John Wiley & Sons.
  • Train, K. (2003). Discrete Choice Methods with Simulation, New York: Cambridge University Press.
There are 14 citations in total.

Details

Subjects Business Administration
Other ID JA27MS73AJ
Journal Section Articles
Authors

Ron Mittelhammer This is me

George Judge This is me

Publication Date April 1, 2009
Submission Date April 1, 2009
Published in Issue Year 2009 Volume: 1 Issue: 1

Cite

APA Mittelhammer, R., & Judge, G. (2009). A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model. International Econometric Review, 1(1), 33-49.
AMA Mittelhammer R, Judge G. A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model. IER. June 2009;1(1):33-49.
Chicago Mittelhammer, Ron, and George Judge. “A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model”. International Econometric Review 1, no. 1 (June 2009): 33-49.
EndNote Mittelhammer R, Judge G (June 1, 2009) A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model. International Econometric Review 1 1 33–49.
IEEE R. Mittelhammer and G. Judge, “A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model”, IER, vol. 1, no. 1, pp. 33–49, 2009.
ISNAD Mittelhammer, Ron - Judge, George. “A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model”. International Econometric Review 1/1 (June 2009), 33-49.
JAMA Mittelhammer R, Judge G. A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model. IER. 2009;1:33–49.
MLA Mittelhammer, Ron and George Judge. “A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model”. International Econometric Review, vol. 1, no. 1, 2009, pp. 33-49.
Vancouver Mittelhammer R, Judge G. A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model. IER. 2009;1(1):33-49.