BibTex RIS Kaynak Göster

Fourier-type integral transforms in modeling of transversal oscillation

Yıl 2015, Cilt: 3 Sayı: 1, 18 - 22, 17.01.2015
https://doi.org/10.18100/ijamec.36094

Öz

The model of transversal oscillation for an elastic piecewise-homogeneous rod is constructed. In order to find a solution of this model   a   Fourier-type integral transforms method for the fourth-order differential equations is developed. The decomposition theorem is proved by Cauchy contour integration method. The conditions of existence for fundamental solutions of the initial - boundary value problem are established and explicit expressions of these fundamental solutions are found. 

Kaynakça

  • Ahtjamov A.M., Sadovnichy V. A, Sultanaev J.T.(2009) Inverse Sturm--Liouville theory with non disintegration boundary conditions. -Moscow: Publishing house of the Moscow university.
  • Bavrin I.I., Matrosov V.L., Jaremko O. E.(2006) Operators of transformation in the analysis, mathematical physics and Pattern recognition. Moscow, Prometheus, p 292.
  • Bejtmen G., Erdeji A., (1966) High transcendental function, Bessel function, Parabolic cylinder function, Orthogonal polynomials. Reference mathematical library, Moscow, p 296.
  • Brejsuell R., (1990) Hartley transform, Moscow, World, p 584.
  • Vladimirov V. S., Zharinov V.V., (2004) The equations of mathematical physics, Moscow, Phys mat lit, p 400.
  • Gantmaxer F.R., (2010) Theory matrix. Moscow, Phys mat lit, p 560.
  • Grinchenko V. T., Ulitko A.F., Shulga N.A., (1989) Dynamics related fields in elements of designs. Electro elasticity. Kiev. Naukova Dumka,p 279.
  • Lenyuk M.P., (1991) Hybrid Integral transform (Bessel, Lagrange, Bessel), the Ukrainian mathematical magazine. p. 770-779.
  • Lenyuk M.P., (1989) Hybrid Integral transform (Bessel, Fourier, Bessel), Mathematical physics and non-linear mechanics, p. 68-74
  • Lenyuk M.P.(1989) Integral Fourier transform on piece-wise homogeneous semi-axis, Mathematica, p. 14-18.
  • Najda L. S., (1984) Hybrid integral transform type Hankel- Legendary, Mathematical methods of the analysis of dynamic systems. Kharkov, р 132-135.
  • Protsenko V. S., Solovev A.I.. (1982) Some hybrid integral transform and their applications in the theory of elasticity of heterogeneous medium. Applied mechanics, p 62-67.
  • Rvachyov V. L., , Protsenko V. S., (1977) Contact problems of the theory of elasticity for anon classical areas, Kiev. Naukova Dumka.
  • Sneddon I.. (1955) Fourier Transform, Moscow.
  • Sneddon I., Beri D. S., (2008) The classical theory of elasticity. University book, p. 215.
  • Uflyand I. S. (1967) Integral transforms in the problem of the theory of elasticity. Leningrad. Science, p. 402
  • Uflyand I. S..(1967) On some new integral transformations and their applications to problems of mathematical physics. Problems of mathematical physics. Leningrad, p. 93-106
  • Arfken, G. B.; Weber, H. J. (2000), Mathematical Methods for Physicists (5th ed.), Boston, assachusetts: Academic Press.
  • Jaremko O. E., (2007) Matrix integral Fourier transform for problems with discontinuous coefficients and conversion operators. Proceedings of the USSR Academy of Sciences. p. 323-325.

Original Research Paper

Yıl 2015, Cilt: 3 Sayı: 1, 18 - 22, 17.01.2015
https://doi.org/10.18100/ijamec.36094

Öz

Kaynakça

  • Ahtjamov A.M., Sadovnichy V. A, Sultanaev J.T.(2009) Inverse Sturm--Liouville theory with non disintegration boundary conditions. -Moscow: Publishing house of the Moscow university.
  • Bavrin I.I., Matrosov V.L., Jaremko O. E.(2006) Operators of transformation in the analysis, mathematical physics and Pattern recognition. Moscow, Prometheus, p 292.
  • Bejtmen G., Erdeji A., (1966) High transcendental function, Bessel function, Parabolic cylinder function, Orthogonal polynomials. Reference mathematical library, Moscow, p 296.
  • Brejsuell R., (1990) Hartley transform, Moscow, World, p 584.
  • Vladimirov V. S., Zharinov V.V., (2004) The equations of mathematical physics, Moscow, Phys mat lit, p 400.
  • Gantmaxer F.R., (2010) Theory matrix. Moscow, Phys mat lit, p 560.
  • Grinchenko V. T., Ulitko A.F., Shulga N.A., (1989) Dynamics related fields in elements of designs. Electro elasticity. Kiev. Naukova Dumka,p 279.
  • Lenyuk M.P., (1991) Hybrid Integral transform (Bessel, Lagrange, Bessel), the Ukrainian mathematical magazine. p. 770-779.
  • Lenyuk M.P., (1989) Hybrid Integral transform (Bessel, Fourier, Bessel), Mathematical physics and non-linear mechanics, p. 68-74
  • Lenyuk M.P.(1989) Integral Fourier transform on piece-wise homogeneous semi-axis, Mathematica, p. 14-18.
  • Najda L. S., (1984) Hybrid integral transform type Hankel- Legendary, Mathematical methods of the analysis of dynamic systems. Kharkov, р 132-135.
  • Protsenko V. S., Solovev A.I.. (1982) Some hybrid integral transform and their applications in the theory of elasticity of heterogeneous medium. Applied mechanics, p 62-67.
  • Rvachyov V. L., , Protsenko V. S., (1977) Contact problems of the theory of elasticity for anon classical areas, Kiev. Naukova Dumka.
  • Sneddon I.. (1955) Fourier Transform, Moscow.
  • Sneddon I., Beri D. S., (2008) The classical theory of elasticity. University book, p. 215.
  • Uflyand I. S. (1967) Integral transforms in the problem of the theory of elasticity. Leningrad. Science, p. 402
  • Uflyand I. S..(1967) On some new integral transformations and their applications to problems of mathematical physics. Problems of mathematical physics. Leningrad, p. 93-106
  • Arfken, G. B.; Weber, H. J. (2000), Mathematical Methods for Physicists (5th ed.), Boston, assachusetts: Academic Press.
  • Jaremko O. E., (2007) Matrix integral Fourier transform for problems with discontinuous coefficients and conversion operators. Proceedings of the USSR Academy of Sciences. p. 323-325.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Oleg Yaremko

Nataliia Yaremko Bu kişi benim

Nikita Tyapin Bu kişi benim

Yayımlanma Tarihi 17 Ocak 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 1

Kaynak Göster

APA Yaremko, O., Yaremko, N., & Tyapin, N. (2015). Fourier-type integral transforms in modeling of transversal oscillation. International Journal of Applied Mathematics Electronics and Computers, 3(1), 18-22. https://doi.org/10.18100/ijamec.36094
AMA Yaremko O, Yaremko N, Tyapin N. Fourier-type integral transforms in modeling of transversal oscillation. International Journal of Applied Mathematics Electronics and Computers. Ocak 2015;3(1):18-22. doi:10.18100/ijamec.36094
Chicago Yaremko, Oleg, Nataliia Yaremko, ve Nikita Tyapin. “Fourier-Type Integral Transforms in Modeling of Transversal Oscillation”. International Journal of Applied Mathematics Electronics and Computers 3, sy. 1 (Ocak 2015): 18-22. https://doi.org/10.18100/ijamec.36094.
EndNote Yaremko O, Yaremko N, Tyapin N (01 Ocak 2015) Fourier-type integral transforms in modeling of transversal oscillation. International Journal of Applied Mathematics Electronics and Computers 3 1 18–22.
IEEE O. Yaremko, N. Yaremko, ve N. Tyapin, “Fourier-type integral transforms in modeling of transversal oscillation”, International Journal of Applied Mathematics Electronics and Computers, c. 3, sy. 1, ss. 18–22, 2015, doi: 10.18100/ijamec.36094.
ISNAD Yaremko, Oleg vd. “Fourier-Type Integral Transforms in Modeling of Transversal Oscillation”. International Journal of Applied Mathematics Electronics and Computers 3/1 (Ocak 2015), 18-22. https://doi.org/10.18100/ijamec.36094.
JAMA Yaremko O, Yaremko N, Tyapin N. Fourier-type integral transforms in modeling of transversal oscillation. International Journal of Applied Mathematics Electronics and Computers. 2015;3:18–22.
MLA Yaremko, Oleg vd. “Fourier-Type Integral Transforms in Modeling of Transversal Oscillation”. International Journal of Applied Mathematics Electronics and Computers, c. 3, sy. 1, 2015, ss. 18-22, doi:10.18100/ijamec.36094.
Vancouver Yaremko O, Yaremko N, Tyapin N. Fourier-type integral transforms in modeling of transversal oscillation. International Journal of Applied Mathematics Electronics and Computers. 2015;3(1):18-22.