Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 226 - 237, 29.12.2025
https://doi.org/10.32571/ijct.1681138

Abstract

Project Number

FEF.YLT.22.18

References

  • Abdel Aziz, A. A., & Seda, S. H. (2017). Synthesis, Spectral Characterization, SEM, Antimicrobial, Antioxidative Activity Evaluation, DNA Binding and DNA Cleavage Investigation of Transition Metal(II) Complexes Derived from a tetradentate Schiff base bearing thiophene moiety. Journal of Fluorescence, 27(3), 1051-1066. https://doi.org/10.1007/s10895-017-2039-9
  • Abedin, M. M., Kumar Pal, T., Najem Uddin, M., Alim, M. A., & Paul, S. (2024). Synthesis, quantum chemical calculations, in silico and in vitro bioactivity of a sulfonamide-Schiff base derivative. Heliyon, 10, e34556. https://doi.org/10.1016/j.heliyon.2024.e34556
  • Abu-Khadra, A. S., Afify, A. S., Mohamed, A., Farag, R. S., & Aboul-Enein, H. Y. (2018). Preparation, Characterization and Antimicrobial Activity of Schiff Base of (E) - N - (4-(Thiophen-2-ylmethyleneamino) Phenylsulfonyl) Acetamide Metal Complexes. The Open Bioactive Compounds Journal, 6(1), 1–10. https://doi.org/10.2174/1874847301806010001
  • Ain, Q. U., Singh, I., Carmieli, R., Savci, A., Paul, K., & Sharma, R. (2023). Substituted 2,5 thiophene dicarboxaldehyde bisthiosemicarbazones and their copper(II) complexes: Synthesis, structure elucidation, HSA binding, biological activities and docking studies. Journal of Molecular Structure, 1291, 135996. https://doi.org/10.1016/j.molstruc.2023.135996
  • Altundas, A., Sarı, N., Colak, N., & Ögütcü, H. (2010). Synthesis and biological activity of new cycloalkylthiophene-Schiff bases and their Cr(III) and Zn(II) complexes. Medicinal Chemistry Research, 19(6), 576–588. https://doi.org/10.1007/s00044-009-9214-8
  • Ashoor, L. S., Majeed, R. A., & Al-Shemary, R. K. R. (2021). "Applications of biological of Azo-Schiff base ligand and its metal complexes and: A review ". Muthanna Journal of Pure Science, 8(1), 74-80. https://doi.org/10.52113/2/08.01.2021/74-90
  • Basavaraj M. Dınnımath, P. G. A. N. (2023). Development Of Organometallıc Compounds Of Schıff Bases Wıth Dıverse Applıcatıons. International Journal of Pharmacy and Pharmaceutical Sciences, 1–15. https://doi.org/10.22159/ijpps.2023v15i6.47362
  • Begum, K., Begum, S., Sheikh, C., Miyatake, R., & Zangrando, E. (2020). Cis versus trans arrangement of dithiocarbazate ligands in bis-chelated Ni and Cu complexes. Acta Crystallographica Section E Crystallographic Communications, 76(5), 692-696. https://doi.org/10.1107/S205698902000506X
  • Capan, A. (2019). A Density Functional Theory Study of 3,5-dichlorosalicyliden-p-iminoacetophenone oxime Complexes with Co, Ni, Cu and Zn Metals. 41(5), 770-778. https://inis.iaea.org/records/k13gt-hr194
  • Çapan, A., Uruş, S., & Sönmez, M. (2018). Ru(III), Cr(III), Fe(III) complexes of Schiff base ligands bearing phenoxy Groups: Application as catalysts in the synthesis of vitamin K3. Journal of Saudi Chemical Society, 22(6), 757–766. https://doi.org/10.1016/j.jscs.2017.12.007
  • Ceylan, Ü., Çapan, A., Yalçın, Ş. P., Sönmez, M., & Aygün, M. (2017). Vibrational spectroscopic and thermo dynamical property studies, Fukui functions, HOMO-LUMO, NLO, NBO and crystal structure analysis of a new Schiff base bearing phenoxy-imine group. Journal of Molecular Structure, 1136, 222-230. https://doi.org/10.1016/j.molstruc.2017.02.014
  • Coandă, M., Limban, C., & Nuță, D. C. (2024). Small Schiff Base Molecules—A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics, 13(1), 75. https://doi.org/10.3390/antibiotics13010075
  • Ebrahimi, H., Hadi, J. S., & Al-Ansari, H. S. (2013). A new series of Schiff bases derived from sulfa drugs and indole-3-carboxaldehyde: Synthesis, characterization, spectral and DFT computational studies. Journal of Molecular Structure, 1039, 37–45. https://doi.org/10.1016/j.molstruc.2013.01.063
  • Ejelonu, B., Oyeneyin, O., & 2018, undefined. (2018). Synthesis, characterization and antimicrobial properties of transition metal complexes of aniline and sulphadiazine Schiff bases as mixed ligands (5, Trans.). Journal of Chemical and Pharmaceutical Research, 10, 67-73.
  • Elangovan, N., Thomas, R., Sowrirajan, S., & Irfan, A. (2021). Synthesis, spectral and quantum mechanical studies and molecular docking studies of Schiff base (E)2-hydroxy-5-(((4-(N-pyrimidin-2-yl)sulfamoyl)phenyl)imino)methyl benzoic acid from 5-formyl salicylic acid and sulfadiazine. Journal of the Indian Chemical Society, 98(10), 100144. https://doi.org/10.1016/j.jics.2021.100144
  • El-Baradie, K. Y. (2005). Preparation and Characterization of Sulfadiazine Schiff Base Complexes of Co(II), Ni(II), Cu(II), and Mn(II). Monatshefte Für Chemie - Chemical Monthly, 136(7), 1139-1155. https://doi.org/10.1007/s00706-004-0257-8
  • Hamad, A., Khan, M. A., Ahmad, I., Khalil, R., Khalid, M., Abbas, U., Azhar, R., Uddin, J., Batiha, G. E.-S., Khan, A., Shafiq, Z., & Al-Harrasi, A. (2021). Bio-oriented synthesis of new sulphadiazine derivatives for urease inhibition and their pharmacokinetic analysis. Scientific Reports, 11(1), 18973. https://doi.org/10.1038/s41598-021-98413-x
  • Hoffmann, R., Alvarez, S., Mealli, C., Falceto, A., Cahill, T. J., Zeng, T., & Manca, G. (2016). From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields. Chemical Reviews, 116(14), 8173-8192. https://doi.org/10.1021/acs.chemrev.6b00251
  • House, J. E. (2020). Ligand fields and molecular orbitals. In Inorganic Chemistry (pp. 687–715). Elsevier. https://doi.org/10.1016/B978-0-12-814369-8.00017-0
  • Hunt, N. T. (2024). Using 2D-IR Spectroscopy to Measure the Structure, Dynamics, and Intermolecular Interactions of Proteins in H 2 O. Accounts of Chemical Research, 57(5), 685-692. https://doi.org/10.1021/acs.accounts.3c00682
  • Jaget, P. S., Vishwakarma, P. K., Parte, M. K., & Maurya, R. C. (2022). Synthesis, density functional theory, molecular docking and antioxidant studies of ruthenium(II) carbonyl complex of N-dehydroacetic acid-4-aminoantipyrene. Journal of Coordination Chemistry, 75(9–10), 1256–1272. https://doi.org/10.1080/00958972.2022.2098017
  • Kanagavalli, A., Jayachitra, R., Thilagavathi, G., Padmavathy, M., Elangovan, N., Sowrirajan, S., & Thomas, R. (2023). Synthesis, structural, spectral, computational, docking and biological activities of Schiff base (E)-4-bromo-2-hydroxybenzylidene) amino)-N-(pyrimidin-2-yl) benzenesulfonamide from 5-bromosalicylaldehyde and sulfadiazine. Journal of the Indian Chemical Society, 100(1), 100823. https://doi.org/10.1016/j.jics.2022.100823
  • Kocaeren, A. A., & Karatağ, E. (2023). Thiophene-containing Schiff base polymers: synthesis, characterization, and anti-bacterial properties. Iranian Polymer Journal, 32(11), 1405–1419. https://doi.org/10.1007/s13726-023-01211-7
  • Krátký, M., Dzurková, M., Janoušek, J., Konečná, K., Trejtnar, F., Stolaříková, J., & Vinšová, J. (2017). Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity. Molecules, 22(9), 1573. https://doi.org/10.3390/molecules22091573
  • Kumar, M., Singh, A. K., Singh, A. K., Yadav, R. K., Singh, S., Singh, A. P., & Chauhan, A. (2023). Recent advances in 3d-block metal complexes with bi, tri, and tetradentate Schiff base ligands derived from salicylaldehyde and its derivatives: Synthesis, characterization and applications. Coordination Chemistry Reviews, 488, 215176. https://doi.org/10.1016/j.ccr.2023.215176
  • Liu, X., & Hamon, J.-R. (2019). Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coordination Chemistry Reviews, 389, 94–118. https://doi.org/10.1016/j.ccr.2019.03.010
  • M. Alosaimi, A., Mannoubi, I. El, & A. Zabin, S. (2020). In Vitro Antimicrobial and in Vivo Molluscicidal Potentialities of Fe(III), Co(II) and Ni(II) Complexes Incorporating Symmetrical Tetradentate Schiff Bases (N2O2). Oriental Journal of Chemistry, 36(03), 373–384. https://doi.org/10.13005/ojc/360304
  • Mansour, A. M. (2014). Selective coordination ability of sulfamethazine Schiff-base ligand towards copper(II): Molecular structures, spectral and SAR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123, 257-266. https://doi.org/10.1016/j.saa.2013.12.066
  • Maurya, R. C., Chourasia, J., Rajak, D., Malik, B. A., Mir, J. M., Jain, N., & Batalia, S. (2016). Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling of some oxovanadium(IV) complexes involving O, N-donor environment of salicylaldehyde-based sulfa drug Schiff bases. Arabian Journal of Chemistry, 9, S1084-S1100. https://doi.org/10.1016/j.arabjc.2011.12.012
  • Mondal, S., Mandal, S. M., Mondal, T. K., & Sinha, C. (2017). Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases. Journal of Molecular Structure, 1127, 557-567. https://doi.org/10.1016/j.molstruc.2016.08.011
  • Nakamura, T., Schmies, M., Patzer, A., Miyazaki, M., Ishiuchi, S., Weiler, M., Dopfer, O., & Fujii, M. (2014). Solvent Migration in Microhydrated Aromatic Aggregates: Ionization‐Induced Site Switching in the 4‐Aminobenzonitrile–Water Cluster. Chemistry – A European Journal, 20(7), 2031–2039. https://doi.org/10.1002/chem.201303321
  • Nayab, S., Alam, A., Ahmad, N., Khan, S. W., Khan, W., Shams, D. F., Shah, M. I. A., Ateeq, M., Shah, S. K., & Lee, H. (2023). Thiophene-Derived Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Properties, and Molecular Docking. ACS Omega, 8(20), 17620-17633. https://doi.org/10.1021/acsomega.2c08266
  • Radha, S., Mothilal, K. K., Thamaraichelvan, A., & Shanmugam, R. (2018). Synthesis, Characterization, Antimicrobial and Density Functional Theory Studies of Metal Complexes of 3-Benzoyl-7-methoxy Coumarin. Indian Journal of Pharmaceutical Sciences, 80(4). https://doi.org/10.4172/pharmaceutical-sciences.1000401
  • Sabry Al-Atbi, H., K Al-Salamia, B., & J Al-Assadi, I. (2025). Synthesis, Characterization, Antimicrobial and Antioxidant Studies of Azomethine Compounds Derived from Sulfa Drugs. Chemical Interactions, 2(1), 1-6. https://doi.org/10.64354/ofon.ci.2.1.34
  • Salehi, M., Kubicki, M., Galini, M., Jafari, M., & Malekshah, R. E. (2019). Synthesis, characterization and crystal structures of two novel sulfa drug Schiff base ligands derived sulfonamide and molecular docking study. Journal of Molecular Structure, 1180, 595–602. https://doi.org/10.1016/j.molstruc.2018.12.002
  • Şimşek, M., Tamer, Ö., Dege, N., Avcı, D., & Atalay, Y. (2025). Investigation on the effect of complex formation on prominent high static/dynamic first and second hyperpolarizability of Co(II) complex including 4-chloro-Pyridine-2-Carboxylic acid. Materials Science in Semiconductor Processing, 188, 109179. https://doi.org/10.1016/j.mssp.2024.109179
  • Sönmez, M., Çelebı, M., Levent, A., Berber, İ., & Şentürk, Z. (2010). A new pyrimidine-derived ligand, N -pyrimidine oxalamic acid, and its Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) complexes: synthesis, characterization, electrochemical properties, and biological activity. Journal of Coordination Chemistry, 63(5), 848-860. https://doi.org/10.1080/00958971003646506
  • Tsacheva, I., Todorova, Z., Momekova, D., Momekov, G., & Koseva, N. (2023). Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals, 16(7), 938. https://doi.org/10.3390/ph16070938
  • Warad, I., Ali, O., Al Ali, A., Jaradat, N. A., Hussein, F., Abdallah, L., Al-Zaqri, N., Alsalme, A., & Alharthi, F. A. (2020). Synthesis and Spectral Identification of Three Schiff Bases with a 2-(Piperazin-1-yl)-N-(thiophen-2-yl methylene)ethanamine Moiety Acting as Novel Pancreatic Lipase Inhibitors: Thermal, DFT, Antioxidant, Antibacterial, and Molecular Docking Investigations. Molecules, 25(9), 2253. https://doi.org/10.3390/molecules25092253
  • Zemede, Y. B., Nithyakalyani, D., & Kumar, S. A. (2015). Synthesis, Characterization and Antimicrobial Properties of Some Transition Metal Complexes with NS-Chelating Schiff Base Ligand Incorporating Thiophene and Sulfonamide Moieties. Asian Journal of Chemistry, 27(3), 941–948. https://doi.org/10.14233/ajchem.2015.17627

Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes

Year 2025, Volume: 9 Issue: 2, 226 - 237, 29.12.2025
https://doi.org/10.32571/ijct.1681138

Abstract

Among heterocyclic compounds, thiophene and sulfadiazine ring ligands are attracting more interest in this field due to their significant biological activity. This study involves the synthesis of a thiophene-ringed Schiff base and the elucidation of the structures of first-row transition metal complexes of this ligand. The compound to be used as the ligand was synthesized from the reaction of thiophene-2,5-dicarbaldehyde and 4-amino-N-(pyrimidin-2-yl)benzenesulfonamide. The ligand was synthesized with Cu(II), Ni(II), and Co(II) chloride salts in a 1:1 stoichiometric reaction to produce [MLCl₂(H₂O)₂]nH₂O complexes. The structures of the synthesized compounds were determined using spectroscopic and analytical techniques such as NMR (ligand), FT-IR, UV-Vis, elemental analysis (CHNS), electrolyte conductivity, and magnetic susceptibility. Magnetic susceptibility measurements for the LCu, LCo, and LNi complexes were recorded as 2.13 BM, 3.44 BM, and 2.60, respectively. The LCu, LCo, and LNi complexes have octahedral geometry. The molar conductivity values of the complexes range between 17.01-19.02 μS/cm, indicating that they do not possess conductivity properties. This study highlights the potential of Schiff base ligands containing thiophene and sulfonamide in coordination chemistry and serves as a foundation for biological activity studies of these compounds.

Supporting Institution

Gaziantep University Scientific Research Projects Department

Project Number

FEF.YLT.22.18

Thanks

Support for the completion of this project was granted by the Gaziantep University Scientific Research Projects Department (FEF.YLT.22.18).

References

  • Abdel Aziz, A. A., & Seda, S. H. (2017). Synthesis, Spectral Characterization, SEM, Antimicrobial, Antioxidative Activity Evaluation, DNA Binding and DNA Cleavage Investigation of Transition Metal(II) Complexes Derived from a tetradentate Schiff base bearing thiophene moiety. Journal of Fluorescence, 27(3), 1051-1066. https://doi.org/10.1007/s10895-017-2039-9
  • Abedin, M. M., Kumar Pal, T., Najem Uddin, M., Alim, M. A., & Paul, S. (2024). Synthesis, quantum chemical calculations, in silico and in vitro bioactivity of a sulfonamide-Schiff base derivative. Heliyon, 10, e34556. https://doi.org/10.1016/j.heliyon.2024.e34556
  • Abu-Khadra, A. S., Afify, A. S., Mohamed, A., Farag, R. S., & Aboul-Enein, H. Y. (2018). Preparation, Characterization and Antimicrobial Activity of Schiff Base of (E) - N - (4-(Thiophen-2-ylmethyleneamino) Phenylsulfonyl) Acetamide Metal Complexes. The Open Bioactive Compounds Journal, 6(1), 1–10. https://doi.org/10.2174/1874847301806010001
  • Ain, Q. U., Singh, I., Carmieli, R., Savci, A., Paul, K., & Sharma, R. (2023). Substituted 2,5 thiophene dicarboxaldehyde bisthiosemicarbazones and their copper(II) complexes: Synthesis, structure elucidation, HSA binding, biological activities and docking studies. Journal of Molecular Structure, 1291, 135996. https://doi.org/10.1016/j.molstruc.2023.135996
  • Altundas, A., Sarı, N., Colak, N., & Ögütcü, H. (2010). Synthesis and biological activity of new cycloalkylthiophene-Schiff bases and their Cr(III) and Zn(II) complexes. Medicinal Chemistry Research, 19(6), 576–588. https://doi.org/10.1007/s00044-009-9214-8
  • Ashoor, L. S., Majeed, R. A., & Al-Shemary, R. K. R. (2021). "Applications of biological of Azo-Schiff base ligand and its metal complexes and: A review ". Muthanna Journal of Pure Science, 8(1), 74-80. https://doi.org/10.52113/2/08.01.2021/74-90
  • Basavaraj M. Dınnımath, P. G. A. N. (2023). Development Of Organometallıc Compounds Of Schıff Bases Wıth Dıverse Applıcatıons. International Journal of Pharmacy and Pharmaceutical Sciences, 1–15. https://doi.org/10.22159/ijpps.2023v15i6.47362
  • Begum, K., Begum, S., Sheikh, C., Miyatake, R., & Zangrando, E. (2020). Cis versus trans arrangement of dithiocarbazate ligands in bis-chelated Ni and Cu complexes. Acta Crystallographica Section E Crystallographic Communications, 76(5), 692-696. https://doi.org/10.1107/S205698902000506X
  • Capan, A. (2019). A Density Functional Theory Study of 3,5-dichlorosalicyliden-p-iminoacetophenone oxime Complexes with Co, Ni, Cu and Zn Metals. 41(5), 770-778. https://inis.iaea.org/records/k13gt-hr194
  • Çapan, A., Uruş, S., & Sönmez, M. (2018). Ru(III), Cr(III), Fe(III) complexes of Schiff base ligands bearing phenoxy Groups: Application as catalysts in the synthesis of vitamin K3. Journal of Saudi Chemical Society, 22(6), 757–766. https://doi.org/10.1016/j.jscs.2017.12.007
  • Ceylan, Ü., Çapan, A., Yalçın, Ş. P., Sönmez, M., & Aygün, M. (2017). Vibrational spectroscopic and thermo dynamical property studies, Fukui functions, HOMO-LUMO, NLO, NBO and crystal structure analysis of a new Schiff base bearing phenoxy-imine group. Journal of Molecular Structure, 1136, 222-230. https://doi.org/10.1016/j.molstruc.2017.02.014
  • Coandă, M., Limban, C., & Nuță, D. C. (2024). Small Schiff Base Molecules—A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics, 13(1), 75. https://doi.org/10.3390/antibiotics13010075
  • Ebrahimi, H., Hadi, J. S., & Al-Ansari, H. S. (2013). A new series of Schiff bases derived from sulfa drugs and indole-3-carboxaldehyde: Synthesis, characterization, spectral and DFT computational studies. Journal of Molecular Structure, 1039, 37–45. https://doi.org/10.1016/j.molstruc.2013.01.063
  • Ejelonu, B., Oyeneyin, O., & 2018, undefined. (2018). Synthesis, characterization and antimicrobial properties of transition metal complexes of aniline and sulphadiazine Schiff bases as mixed ligands (5, Trans.). Journal of Chemical and Pharmaceutical Research, 10, 67-73.
  • Elangovan, N., Thomas, R., Sowrirajan, S., & Irfan, A. (2021). Synthesis, spectral and quantum mechanical studies and molecular docking studies of Schiff base (E)2-hydroxy-5-(((4-(N-pyrimidin-2-yl)sulfamoyl)phenyl)imino)methyl benzoic acid from 5-formyl salicylic acid and sulfadiazine. Journal of the Indian Chemical Society, 98(10), 100144. https://doi.org/10.1016/j.jics.2021.100144
  • El-Baradie, K. Y. (2005). Preparation and Characterization of Sulfadiazine Schiff Base Complexes of Co(II), Ni(II), Cu(II), and Mn(II). Monatshefte Für Chemie - Chemical Monthly, 136(7), 1139-1155. https://doi.org/10.1007/s00706-004-0257-8
  • Hamad, A., Khan, M. A., Ahmad, I., Khalil, R., Khalid, M., Abbas, U., Azhar, R., Uddin, J., Batiha, G. E.-S., Khan, A., Shafiq, Z., & Al-Harrasi, A. (2021). Bio-oriented synthesis of new sulphadiazine derivatives for urease inhibition and their pharmacokinetic analysis. Scientific Reports, 11(1), 18973. https://doi.org/10.1038/s41598-021-98413-x
  • Hoffmann, R., Alvarez, S., Mealli, C., Falceto, A., Cahill, T. J., Zeng, T., & Manca, G. (2016). From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields. Chemical Reviews, 116(14), 8173-8192. https://doi.org/10.1021/acs.chemrev.6b00251
  • House, J. E. (2020). Ligand fields and molecular orbitals. In Inorganic Chemistry (pp. 687–715). Elsevier. https://doi.org/10.1016/B978-0-12-814369-8.00017-0
  • Hunt, N. T. (2024). Using 2D-IR Spectroscopy to Measure the Structure, Dynamics, and Intermolecular Interactions of Proteins in H 2 O. Accounts of Chemical Research, 57(5), 685-692. https://doi.org/10.1021/acs.accounts.3c00682
  • Jaget, P. S., Vishwakarma, P. K., Parte, M. K., & Maurya, R. C. (2022). Synthesis, density functional theory, molecular docking and antioxidant studies of ruthenium(II) carbonyl complex of N-dehydroacetic acid-4-aminoantipyrene. Journal of Coordination Chemistry, 75(9–10), 1256–1272. https://doi.org/10.1080/00958972.2022.2098017
  • Kanagavalli, A., Jayachitra, R., Thilagavathi, G., Padmavathy, M., Elangovan, N., Sowrirajan, S., & Thomas, R. (2023). Synthesis, structural, spectral, computational, docking and biological activities of Schiff base (E)-4-bromo-2-hydroxybenzylidene) amino)-N-(pyrimidin-2-yl) benzenesulfonamide from 5-bromosalicylaldehyde and sulfadiazine. Journal of the Indian Chemical Society, 100(1), 100823. https://doi.org/10.1016/j.jics.2022.100823
  • Kocaeren, A. A., & Karatağ, E. (2023). Thiophene-containing Schiff base polymers: synthesis, characterization, and anti-bacterial properties. Iranian Polymer Journal, 32(11), 1405–1419. https://doi.org/10.1007/s13726-023-01211-7
  • Krátký, M., Dzurková, M., Janoušek, J., Konečná, K., Trejtnar, F., Stolaříková, J., & Vinšová, J. (2017). Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity. Molecules, 22(9), 1573. https://doi.org/10.3390/molecules22091573
  • Kumar, M., Singh, A. K., Singh, A. K., Yadav, R. K., Singh, S., Singh, A. P., & Chauhan, A. (2023). Recent advances in 3d-block metal complexes with bi, tri, and tetradentate Schiff base ligands derived from salicylaldehyde and its derivatives: Synthesis, characterization and applications. Coordination Chemistry Reviews, 488, 215176. https://doi.org/10.1016/j.ccr.2023.215176
  • Liu, X., & Hamon, J.-R. (2019). Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coordination Chemistry Reviews, 389, 94–118. https://doi.org/10.1016/j.ccr.2019.03.010
  • M. Alosaimi, A., Mannoubi, I. El, & A. Zabin, S. (2020). In Vitro Antimicrobial and in Vivo Molluscicidal Potentialities of Fe(III), Co(II) and Ni(II) Complexes Incorporating Symmetrical Tetradentate Schiff Bases (N2O2). Oriental Journal of Chemistry, 36(03), 373–384. https://doi.org/10.13005/ojc/360304
  • Mansour, A. M. (2014). Selective coordination ability of sulfamethazine Schiff-base ligand towards copper(II): Molecular structures, spectral and SAR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123, 257-266. https://doi.org/10.1016/j.saa.2013.12.066
  • Maurya, R. C., Chourasia, J., Rajak, D., Malik, B. A., Mir, J. M., Jain, N., & Batalia, S. (2016). Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling of some oxovanadium(IV) complexes involving O, N-donor environment of salicylaldehyde-based sulfa drug Schiff bases. Arabian Journal of Chemistry, 9, S1084-S1100. https://doi.org/10.1016/j.arabjc.2011.12.012
  • Mondal, S., Mandal, S. M., Mondal, T. K., & Sinha, C. (2017). Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases. Journal of Molecular Structure, 1127, 557-567. https://doi.org/10.1016/j.molstruc.2016.08.011
  • Nakamura, T., Schmies, M., Patzer, A., Miyazaki, M., Ishiuchi, S., Weiler, M., Dopfer, O., & Fujii, M. (2014). Solvent Migration in Microhydrated Aromatic Aggregates: Ionization‐Induced Site Switching in the 4‐Aminobenzonitrile–Water Cluster. Chemistry – A European Journal, 20(7), 2031–2039. https://doi.org/10.1002/chem.201303321
  • Nayab, S., Alam, A., Ahmad, N., Khan, S. W., Khan, W., Shams, D. F., Shah, M. I. A., Ateeq, M., Shah, S. K., & Lee, H. (2023). Thiophene-Derived Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Properties, and Molecular Docking. ACS Omega, 8(20), 17620-17633. https://doi.org/10.1021/acsomega.2c08266
  • Radha, S., Mothilal, K. K., Thamaraichelvan, A., & Shanmugam, R. (2018). Synthesis, Characterization, Antimicrobial and Density Functional Theory Studies of Metal Complexes of 3-Benzoyl-7-methoxy Coumarin. Indian Journal of Pharmaceutical Sciences, 80(4). https://doi.org/10.4172/pharmaceutical-sciences.1000401
  • Sabry Al-Atbi, H., K Al-Salamia, B., & J Al-Assadi, I. (2025). Synthesis, Characterization, Antimicrobial and Antioxidant Studies of Azomethine Compounds Derived from Sulfa Drugs. Chemical Interactions, 2(1), 1-6. https://doi.org/10.64354/ofon.ci.2.1.34
  • Salehi, M., Kubicki, M., Galini, M., Jafari, M., & Malekshah, R. E. (2019). Synthesis, characterization and crystal structures of two novel sulfa drug Schiff base ligands derived sulfonamide and molecular docking study. Journal of Molecular Structure, 1180, 595–602. https://doi.org/10.1016/j.molstruc.2018.12.002
  • Şimşek, M., Tamer, Ö., Dege, N., Avcı, D., & Atalay, Y. (2025). Investigation on the effect of complex formation on prominent high static/dynamic first and second hyperpolarizability of Co(II) complex including 4-chloro-Pyridine-2-Carboxylic acid. Materials Science in Semiconductor Processing, 188, 109179. https://doi.org/10.1016/j.mssp.2024.109179
  • Sönmez, M., Çelebı, M., Levent, A., Berber, İ., & Şentürk, Z. (2010). A new pyrimidine-derived ligand, N -pyrimidine oxalamic acid, and its Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) complexes: synthesis, characterization, electrochemical properties, and biological activity. Journal of Coordination Chemistry, 63(5), 848-860. https://doi.org/10.1080/00958971003646506
  • Tsacheva, I., Todorova, Z., Momekova, D., Momekov, G., & Koseva, N. (2023). Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals, 16(7), 938. https://doi.org/10.3390/ph16070938
  • Warad, I., Ali, O., Al Ali, A., Jaradat, N. A., Hussein, F., Abdallah, L., Al-Zaqri, N., Alsalme, A., & Alharthi, F. A. (2020). Synthesis and Spectral Identification of Three Schiff Bases with a 2-(Piperazin-1-yl)-N-(thiophen-2-yl methylene)ethanamine Moiety Acting as Novel Pancreatic Lipase Inhibitors: Thermal, DFT, Antioxidant, Antibacterial, and Molecular Docking Investigations. Molecules, 25(9), 2253. https://doi.org/10.3390/molecules25092253
  • Zemede, Y. B., Nithyakalyani, D., & Kumar, S. A. (2015). Synthesis, Characterization and Antimicrobial Properties of Some Transition Metal Complexes with NS-Chelating Schiff Base Ligand Incorporating Thiophene and Sulfonamide Moieties. Asian Journal of Chemistry, 27(3), 941–948. https://doi.org/10.14233/ajchem.2015.17627
There are 40 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Ali Çapan 0000-0002-6477-6604

Mehmet Can Kurt 0009-0003-7959-9182

Mehmet Sönmez 0000-0003-3127-666X

Project Number FEF.YLT.22.18
Submission Date April 21, 2025
Acceptance Date September 22, 2025
Early Pub Date November 18, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Çapan, A., Kurt, M. C., & Sönmez, M. (2025). Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes. International Journal of Chemistry and Technology, 9(2), 226-237. https://doi.org/10.32571/ijct.1681138
AMA Çapan A, Kurt MC, Sönmez M. Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes. Int. J. Chem. Technol. December 2025;9(2):226-237. doi:10.32571/ijct.1681138
Chicago Çapan, Ali, Mehmet Can Kurt, and Mehmet Sönmez. “Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes”. International Journal of Chemistry and Technology 9, no. 2 (December 2025): 226-37. https://doi.org/10.32571/ijct.1681138.
EndNote Çapan A, Kurt MC, Sönmez M (December 1, 2025) Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes. International Journal of Chemistry and Technology 9 2 226–237.
IEEE A. Çapan, M. C. Kurt, and M. Sönmez, “Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes”, Int. J. Chem. Technol., vol. 9, no. 2, pp. 226–237, 2025, doi: 10.32571/ijct.1681138.
ISNAD Çapan, Ali et al. “Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes”. International Journal of Chemistry and Technology 9/2 (December2025), 226-237. https://doi.org/10.32571/ijct.1681138.
JAMA Çapan A, Kurt MC, Sönmez M. Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes. Int. J. Chem. Technol. 2025;9:226–237.
MLA Çapan, Ali et al. “Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes”. International Journal of Chemistry and Technology, vol. 9, no. 2, 2025, pp. 226-37, doi:10.32571/ijct.1681138.
Vancouver Çapan A, Kurt MC, Sönmez M. Synthesis and Characterization of Sulfadiazine Derivative Schiff Base Ligand and Some Transition Metal Complexes. Int. J. Chem. Technol. 2025;9(2):226-37.