Year 2025,
Volume: 9 Issue: 2, 300 - 305, 29.12.2025
Ezgi Kar
,
Yakup Gülekçi
,
Harun Şener
,
Gamze Güler
,
Hakan Şentürk
,
Fatih Kar
References
-
Akal, A., Ulas, T., Goncu, T., Adibelli, M. F., Kocarslan, S., Guldur, M. E., ... & Demir, T. (2014). Evaluation of the safety of intracameral trypan blue injection on corneal tissue using oxidative stress parameters and apoptotic activity: an experimental study. Arquivos Brasileiros de Oftalmologia, 77(6), 388-391. https://doi.org/10.5935/0004-2749.20140096
-
Başar, Y., Yenigün, S., Behçet, L., Ozen, T., & Demirtas, İ. (2024). Antibacterial and antioxidant molecule isolated from nepeta aristata Boiss Et Kotschy Ex Boiss plant: 1, 5, 9-Epideoxyloganic Acid. International Journal of Chemistry and Technology, 8(1), 27-31. https://doi.org/10.32571/ijct.1381998
-
Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P. L. (2023). Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Molecules, 28(16), 5979. https://doi.org/10.3390/molecules28165979
-
Demircigil, N., Gul, M., Gokturk, N., Kustepe, E. K., Bag, H. G., & Erdemli, M. E. (2022). The Impact of Tartrazine and Thymoquinone Administration on Rat Liver. https://orcid.org/0000-0003-4596-7525
El Golli, N. (2016). Toxicity induced after subchronic administration of the synthetic food dye tartrazine in adult rats, role of oxidative stress. Recent Adv Biol Med, 2(2016), 652.
-
Erel, O., & Neselioglu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clinical biochemistry, 47(18), 326-332. https://doi.org/10.1016/j.clinbiochem.2014.09.026
-
Goswami, D., Mukherjee, J., Mondal, C., & Bhunia, B. (2024). Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects. Science of The Total Environment, 954, 176426. https://doi.org/10.1016/j.scitotenv.2024.176426
-
Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine, 54(4), 287-293. https://doi.org/10.1016/j.ajme.2017.09.001
-
Knight, D. J., Deluyker, H., Chaudhry, Q., Vidal, J. M., & de Boer, A. (2021). A call for action on the development and implementation of new methodologies for safety assessment of chemical-based products in the EU–a short communication. Regulatory Toxicology and Pharmacology, 119, 104837. https://doi.org/10.1016/j.yrtph.2020.104837
-
Kola-Ajibade, I. R., Emmanuel, A., Jegede, R. J., & Augustine, O. (2024). Assessment Of Kidney Function and Lipid Profile in Albino Rats Exposed to Azo-Dye Adulterated Palm Oil. African J. Environ. Natural Sci. Res., 7(2), 133-147. https://doi.org/10.52589/AJENSRRVITERIV
-
Kola-Ajibade, I. R., Grace, A., & Olusola, A. O. (2021). Effects of Azo Dye Adulterated Palm Oil on the Expression of Inflammatory, Functional, Antioxidant Markers and Body Weights in Albino Rats. J Toxicol Risk Assess, 7, 041. https://doi.org/10.23937/2572-4061.1510041
-
Mohamed, S. S., Mahmoud, S. M., Elgawish, R. A., & Elhady, K. A. (2016). Sudan III azo dye: oxidative stress with possible geno and hepatotoxic effects in male rats. International Journal of Science and Research, 5(10), 1700-1704. https://doi.org/10.21275/ART20162590
-
Ndidi, N., Tamuno-boma, O., Udiomine Brantley, A., & Tamunomiebam, E. I. (2020). Toxicological Effects of Sudan III Azo Dye in Palm Oil on Liver Enzyme and Non Enzyme Markers of Albino Rat. International Journal of Nutrition and Food Sciences, 9(4), 104-111. https://doi.org/10.11648/j.ijnfs.20200904.12
-
Qi, P., Zeng, T., Wen, Z., Liang, X., & Zhang, X. (2011). Interference-free simultaneous determination of Sudan dyes in chili foods using solid phase extraction coupled with HPLC–DAD. Food Chemistry, 125(4), 1462-1467. https://doi.org/10.1016/j.foodchem.2010.10.059
-
Ramamurthy, K., Madesh, S., Priya, P. S., Ayub, R., Aljawdah, H. M., Arokiyaraj, S., ... & Arockiaraj, J. (2024). Textile azo dye, Sudan Black B, inducing hepatotoxicity demonstrated in in vivo zebrafish larval model. Fish Physiology and Biochemistry, 50(4), 1811-1829. https://doi.org/10.1007/s10695-024-01371-0
-
Ramos‐Souza, C., Bandoni, D. H., Bragotto, A. P. A., & De Rosso, V. V. (2023). Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement. Comprehensive Reviews in Food Science and Food Safety, 22(1), 380-407. https://doi.org/10.1111/1541-4337.13072
-
Sciuto, S., Esposito, G., Dell'Atti, L., Guglielmetti, C., Acutis, P. L., & Martucci, F. (2017). Rapid screening technique to identify Sudan dyes (I to IV) in adulterated tomato sauce, chilli powder, and palm oil by innovative high-resolution mass spectrometry. Journal of food protection, 80(4), 640-644.doi:10.4315/0362-028X.JFP-16-31
-
Uysal, İ. Evaluation of Antioxidant, Antiproliferative and Anticholinesterase Activities of Iberis carnosa Willd. International Journal of Chemistry and Technology, 9(1), 91-96. https://doi.org/10.32571/ijct.1668024
Evaluation of Systemic Oxidative Damage Following Acute Exposure to the Azo Dye Sudan III in Rats
Year 2025,
Volume: 9 Issue: 2, 300 - 305, 29.12.2025
Ezgi Kar
,
Yakup Gülekçi
,
Harun Şener
,
Gamze Güler
,
Hakan Şentürk
,
Fatih Kar
Abstract
Our study aimed to assess the acute oxidative stress induced by Sudan III, an azo dye frequently misused as an illegal food additive. Twenty-four male Sprague–Dawley rats were randomly allocated into three groups (n = 8 per group): Control, Low Dose (125 mg/kg), and High Dose (250 mg/kg). A single oral administration was performed, and oxidative stress biomarkers along with antioxidant defense parameters were analyzed 24h post-exposure. Rats receiving the high dose of Sudan III exhibited significant elevations in total oxidant status (TOS), oxidative stress ındex (OSI), reactive oxygen species (ROS), and malondialdehyde (MDA), accompanied by pronounced reductions in total antioxidant status (TAS), native thiol, total thiol, disulfide, superoxide dismutase (SOD), and catalase (CAT). These results demonstrate that even short-term exposure to Sudan III provokes systemic oxidative stress and suppresses the antioxidant defense system. Overall, the findings highlight the health risks linked to the illicit use of Sudan III in food products and reinforce the need for stricter regulatory enforcement to ensure consumer safety.
Ethical Statement
Prior to conducting this research, an ethical approval certificate was obtained from the Local Animal Experiments Ethics Committee (HADYEK) of Eskişehir Osmangazi University (Decision date and number: 18.09.2024/183/905-1).
References
-
Akal, A., Ulas, T., Goncu, T., Adibelli, M. F., Kocarslan, S., Guldur, M. E., ... & Demir, T. (2014). Evaluation of the safety of intracameral trypan blue injection on corneal tissue using oxidative stress parameters and apoptotic activity: an experimental study. Arquivos Brasileiros de Oftalmologia, 77(6), 388-391. https://doi.org/10.5935/0004-2749.20140096
-
Başar, Y., Yenigün, S., Behçet, L., Ozen, T., & Demirtas, İ. (2024). Antibacterial and antioxidant molecule isolated from nepeta aristata Boiss Et Kotschy Ex Boiss plant: 1, 5, 9-Epideoxyloganic Acid. International Journal of Chemistry and Technology, 8(1), 27-31. https://doi.org/10.32571/ijct.1381998
-
Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P. L. (2023). Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Molecules, 28(16), 5979. https://doi.org/10.3390/molecules28165979
-
Demircigil, N., Gul, M., Gokturk, N., Kustepe, E. K., Bag, H. G., & Erdemli, M. E. (2022). The Impact of Tartrazine and Thymoquinone Administration on Rat Liver. https://orcid.org/0000-0003-4596-7525
El Golli, N. (2016). Toxicity induced after subchronic administration of the synthetic food dye tartrazine in adult rats, role of oxidative stress. Recent Adv Biol Med, 2(2016), 652.
-
Erel, O., & Neselioglu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clinical biochemistry, 47(18), 326-332. https://doi.org/10.1016/j.clinbiochem.2014.09.026
-
Goswami, D., Mukherjee, J., Mondal, C., & Bhunia, B. (2024). Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects. Science of The Total Environment, 954, 176426. https://doi.org/10.1016/j.scitotenv.2024.176426
-
Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine, 54(4), 287-293. https://doi.org/10.1016/j.ajme.2017.09.001
-
Knight, D. J., Deluyker, H., Chaudhry, Q., Vidal, J. M., & de Boer, A. (2021). A call for action on the development and implementation of new methodologies for safety assessment of chemical-based products in the EU–a short communication. Regulatory Toxicology and Pharmacology, 119, 104837. https://doi.org/10.1016/j.yrtph.2020.104837
-
Kola-Ajibade, I. R., Emmanuel, A., Jegede, R. J., & Augustine, O. (2024). Assessment Of Kidney Function and Lipid Profile in Albino Rats Exposed to Azo-Dye Adulterated Palm Oil. African J. Environ. Natural Sci. Res., 7(2), 133-147. https://doi.org/10.52589/AJENSRRVITERIV
-
Kola-Ajibade, I. R., Grace, A., & Olusola, A. O. (2021). Effects of Azo Dye Adulterated Palm Oil on the Expression of Inflammatory, Functional, Antioxidant Markers and Body Weights in Albino Rats. J Toxicol Risk Assess, 7, 041. https://doi.org/10.23937/2572-4061.1510041
-
Mohamed, S. S., Mahmoud, S. M., Elgawish, R. A., & Elhady, K. A. (2016). Sudan III azo dye: oxidative stress with possible geno and hepatotoxic effects in male rats. International Journal of Science and Research, 5(10), 1700-1704. https://doi.org/10.21275/ART20162590
-
Ndidi, N., Tamuno-boma, O., Udiomine Brantley, A., & Tamunomiebam, E. I. (2020). Toxicological Effects of Sudan III Azo Dye in Palm Oil on Liver Enzyme and Non Enzyme Markers of Albino Rat. International Journal of Nutrition and Food Sciences, 9(4), 104-111. https://doi.org/10.11648/j.ijnfs.20200904.12
-
Qi, P., Zeng, T., Wen, Z., Liang, X., & Zhang, X. (2011). Interference-free simultaneous determination of Sudan dyes in chili foods using solid phase extraction coupled with HPLC–DAD. Food Chemistry, 125(4), 1462-1467. https://doi.org/10.1016/j.foodchem.2010.10.059
-
Ramamurthy, K., Madesh, S., Priya, P. S., Ayub, R., Aljawdah, H. M., Arokiyaraj, S., ... & Arockiaraj, J. (2024). Textile azo dye, Sudan Black B, inducing hepatotoxicity demonstrated in in vivo zebrafish larval model. Fish Physiology and Biochemistry, 50(4), 1811-1829. https://doi.org/10.1007/s10695-024-01371-0
-
Ramos‐Souza, C., Bandoni, D. H., Bragotto, A. P. A., & De Rosso, V. V. (2023). Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement. Comprehensive Reviews in Food Science and Food Safety, 22(1), 380-407. https://doi.org/10.1111/1541-4337.13072
-
Sciuto, S., Esposito, G., Dell'Atti, L., Guglielmetti, C., Acutis, P. L., & Martucci, F. (2017). Rapid screening technique to identify Sudan dyes (I to IV) in adulterated tomato sauce, chilli powder, and palm oil by innovative high-resolution mass spectrometry. Journal of food protection, 80(4), 640-644.doi:10.4315/0362-028X.JFP-16-31
-
Uysal, İ. Evaluation of Antioxidant, Antiproliferative and Anticholinesterase Activities of Iberis carnosa Willd. International Journal of Chemistry and Technology, 9(1), 91-96. https://doi.org/10.32571/ijct.1668024