Research Article
BibTex RIS Cite

QSPR-based prediction model for the melting point of polycyclic aromatic hydrocarbons using MLR and ANN methods

Year 2024, Volume: 8 Issue: 2, 128 - 136
https://doi.org/10.32571/ijct.1385432

Abstract

The melting point is an important property that helps generate specific compounds with desired thermos-physical properties. Much work has been done applying quantitative structure-property relationships to improve the melting-point correlations, but they are unreliable. This gap might come from the melting point's sensitivity for small molecular variations and descriptors, which currently do not fully consider all factors determining melting behavior. In this work, we provide a QSPR model for predicting the melting point of a heterogeneous polycyclic aromatic hydrocarbons dataset. The model was generated using a robust hybrid linear approach (Genetic Algorithm-Multiple Linear Regression) and a nonlinear approach named Artificial Neural Network (ANN). Three descriptors were chosen to explain the influence of molecular weight and symmetry on melting point. The resulting QSPR model can model melting-point behavior with an RMSE of 34.88K, a coefficient correlation value of R²=0.887, and a prediction coefficient of Q²LOO= 0.863. This study reveals that the results produced by MLR were appropriate and served to predict melting points. However, compared to the results obtained by the ANN model, we conclude that the latter is more effective and better than the MLR model. Based on the results, our suggested model may be effective in predicting melting points, and the selected descriptors play essential roles in determining melting points.

References

  • 1. Pogorzelec, M.; Piekarska, K. Sci. Total Environ. 2018, 631, 1431-1439.
  • 2.Abdel-Shafy, H. I.; Mansour, M. S. M. Egypt. J. Petrol. 2016, 25, 107-123.
  • 3.Kaminski, N. E.; Faubert Kaplan, B. L.; Holsapple, M. P. Casarett and Doull’s Toxicology, the basic science of poisons, C. D. Klaassen (Ed.), Mc-Graw Hill, Inc., New York, 2008.
  • 4.Katritzky, AR.; Maran, U.; Lobanov, VS.; Karelson, M. J Chem. Inf. Comput. Sci. 2000, 40,1–18.
  • 5.Ding, G.; Chen, J.; Qiao, X.; Huang, L.; Lin, J.; Chen, X. Chemosphere. 2006, 62,1057–1063. 6.Xu, HY.; Zou, J.W.; Yu, Q.S.; Wang, Y.H.; Zhang, J.Y.; Jin, H.X. Chemosphere. 2007, 66,1998–2010.
  • 7.Watkins, M.; Sizochenko, N.; Rasulev, B.; Leszczynski, J. J. Mol. Model. 2016, 22, 1-14.
  • 8.Devillers, J.; Balaban. A.T. Topological Indices and Related Descriptors in QSAR and QSPR, 1st Ed.; Gordon and Breach: Amsterdam, Netherlands, 1999.
  • 9.Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P.A.; Igglessi-Markopoulou, O.; Kollias, G. Mol. Diversity. 2010,14, 225–235.
  • 10.Katritzky, A.R.; Kuanar, M.; Slavov, S.; Hall, C.D.; Karelson, Kahn, M. I.; Dobchev, D.A. Chem. Rev. 2010,110, 5714–5789.
  • 11.Guendouzi, A.; Mekelleche, S.M. Chem. Phys. Lipids. 2012, 165, 1–6.
  • 12.Eike, D.M.; Brennecke, J.F.; Maginn, E.J. Green. Chem. 2003, 5 ,323–328.
  • 13.Karthikeyan, M.; Glen, R.C.; Bender, A. J. Chem. Inf. Comput. Sci. 2005, 45, 581–590.
  • 14.Godavarthy, S.S.; Robinson, R.L.; Gasem, K.A.M. Ind. Eng. Chem. Res. 2006, 45, 5117–5126.
  • 15.Habibi-Yangjeh, A.; Pourbasheer, E.; Danandeh-Jenagharad, M. Bull. Korean Chem. Soc. 2008, 29, 833–841.
  • 16.Deeb, O.; Goodarzi, M.; Alfalah, S.; Mol. Phys. 2011, 109,507–516.
  • 17.Todeschini, R.; Gramatica, P.; Provenzani, R.; Marengo, E.; Chemometr. Intell. Lab. 1995, 27, 221-229.
  • 18.Kennard, R.; Stone, L.A. Technometrics. 1969, 11, 137-148.
  • 19.Talete Srl. Dragon for Windows (Software for Molecular Descriptor Calculation) Version 5.5 Milano, Italy, 2007.
  • 20.Gramatica, P. Comput. Toxicol. 2013, 2, 499–526,
  • 21.Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. J. Comput. Chem. 2013, 34, 2121–2132.
  • 22.Gramatica, P.; Cassani, S.; Chirico, N.; J. Comput. Chem. 2014, 35, 1036–1044.
  • 23.Katritzky, A.R.; Lobanov, V.S.; Karelson, M. Chem. Soc. Rev. 1995, 24, 279-287. 24.Worth, A.P.; Bassan, A.; De Bruijn, J.; Gallegos Saliner, A.; Netzeva, T.; Patlewicz, G.; Tsakovska, I.; Eisenreich, S. SAR. QSAR. Environ. Res. 2007, 18, 111-125.
  • 25.Kherouf, S.; Bouarra, N.; Messadi, D. Int. J. Chem. Technol. 2019, 3, 121-128.
  • 26.Bouarra, N.; Nadji, N.; Nouri, L.; Boudjemaa, A.; Bachari, K.; Messadi, D. J. Serb. Chem. Soc. 2021, 86, 63-75.
  • 27.Bouarra N.; Nadji N.; Kherouf S.; Nouri L.; Boudjemaa A.; Bachari K.; Messadi D. J. Turk. Chem. Soc. A: Chem. 2022, 9, 709-720.
  • 28.Gramatica, P.; Giani, E.; Papa, E. J. Mol. Graph. Model. 2007, 25, 755-766.
  • 29.Bouarra, N.; Nadji, N.; Nouri, L.; Boudjemaa, A.; Bachari, K.; Messadi, D. Alg. J. Env. Sc. Tech, 2021, 7, 2013-2023.
  • 30.Fissa, M. R.; Lahiouel, Y.; Khaouane, L.; Hanini, S. J. Mol. Graph. Model. 2019, 87, 109-120.
  • 31.Quang, N. M.; Mau, T. X.; Nhung, N. T. A.; An, T. N. M.; Van Tat, P. J. Mol.Struct. 2019, 1195, 95-109.
  • 32.Moshayedi, S.; Shafiei, F.; Momeni Isfahani, T. Int. J. Quantum. Chem. 2022, 122, e27003.
  • 33.Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Nature, 1986, 323, 533-536.
  • 34.Carbó‐Dorca, R. ;Gallegos, A., & Sánchez, Á. J. J. comp. Chem. 2009,30, 1146-1159.
  • 35.Consonni, V.; Todeschini, R.; Pavan, M. J. Chem. Inf. Comput. Sci. 2002, 42, 682-692.
  • 36.Todeschini, R.; Gramatica, P. Quant. Struct.‐Act. Relat. 1997, 16, 113-119.
  • 37.Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics, Wiley-VCH, New York, 2009.
  • 38.Bocaz-Beneventi, G.; Latorre, R.; Farková, M.; Havel, J. Anal. Chim. Acta. 2002, 452, 47–63.
  • 39.Sheela, K. G.; Deepa, S. N. Math.prob.eng. 2013, 2013,1-11.
  • 40.OECD. Principles for the validation, for regulatory purposes, of (quantitative) structure activity relationship models. In: 37th joint meeting of the chemicals committee and working party on chemicals, pesticides and biotechnology. Paris, France: Organisation for Economic Cooperation and Development, OECD; 2007. 41.Katritzky, R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.; Karelson, M.; Cryst. Growth Des. 2001, 1, 261-265.
  • 42.Dearden, J. C. Sci. Total Environ. 1991, 109/110, 59-68.
  • 43.Kitaigorodsky, A. I. In Molecular Crystals and Molecules; Loebl, E. M., Ed.; Academic Press: New York, 1973.
  • 44.Steinstrasser, R.; Pohl, L. Angew. Chem., Int. Ed. Engl. 1973, 12, 617-630.
Year 2024, Volume: 8 Issue: 2, 128 - 136
https://doi.org/10.32571/ijct.1385432

Abstract

References

  • 1. Pogorzelec, M.; Piekarska, K. Sci. Total Environ. 2018, 631, 1431-1439.
  • 2.Abdel-Shafy, H. I.; Mansour, M. S. M. Egypt. J. Petrol. 2016, 25, 107-123.
  • 3.Kaminski, N. E.; Faubert Kaplan, B. L.; Holsapple, M. P. Casarett and Doull’s Toxicology, the basic science of poisons, C. D. Klaassen (Ed.), Mc-Graw Hill, Inc., New York, 2008.
  • 4.Katritzky, AR.; Maran, U.; Lobanov, VS.; Karelson, M. J Chem. Inf. Comput. Sci. 2000, 40,1–18.
  • 5.Ding, G.; Chen, J.; Qiao, X.; Huang, L.; Lin, J.; Chen, X. Chemosphere. 2006, 62,1057–1063. 6.Xu, HY.; Zou, J.W.; Yu, Q.S.; Wang, Y.H.; Zhang, J.Y.; Jin, H.X. Chemosphere. 2007, 66,1998–2010.
  • 7.Watkins, M.; Sizochenko, N.; Rasulev, B.; Leszczynski, J. J. Mol. Model. 2016, 22, 1-14.
  • 8.Devillers, J.; Balaban. A.T. Topological Indices and Related Descriptors in QSAR and QSPR, 1st Ed.; Gordon and Breach: Amsterdam, Netherlands, 1999.
  • 9.Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P.A.; Igglessi-Markopoulou, O.; Kollias, G. Mol. Diversity. 2010,14, 225–235.
  • 10.Katritzky, A.R.; Kuanar, M.; Slavov, S.; Hall, C.D.; Karelson, Kahn, M. I.; Dobchev, D.A. Chem. Rev. 2010,110, 5714–5789.
  • 11.Guendouzi, A.; Mekelleche, S.M. Chem. Phys. Lipids. 2012, 165, 1–6.
  • 12.Eike, D.M.; Brennecke, J.F.; Maginn, E.J. Green. Chem. 2003, 5 ,323–328.
  • 13.Karthikeyan, M.; Glen, R.C.; Bender, A. J. Chem. Inf. Comput. Sci. 2005, 45, 581–590.
  • 14.Godavarthy, S.S.; Robinson, R.L.; Gasem, K.A.M. Ind. Eng. Chem. Res. 2006, 45, 5117–5126.
  • 15.Habibi-Yangjeh, A.; Pourbasheer, E.; Danandeh-Jenagharad, M. Bull. Korean Chem. Soc. 2008, 29, 833–841.
  • 16.Deeb, O.; Goodarzi, M.; Alfalah, S.; Mol. Phys. 2011, 109,507–516.
  • 17.Todeschini, R.; Gramatica, P.; Provenzani, R.; Marengo, E.; Chemometr. Intell. Lab. 1995, 27, 221-229.
  • 18.Kennard, R.; Stone, L.A. Technometrics. 1969, 11, 137-148.
  • 19.Talete Srl. Dragon for Windows (Software for Molecular Descriptor Calculation) Version 5.5 Milano, Italy, 2007.
  • 20.Gramatica, P. Comput. Toxicol. 2013, 2, 499–526,
  • 21.Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. J. Comput. Chem. 2013, 34, 2121–2132.
  • 22.Gramatica, P.; Cassani, S.; Chirico, N.; J. Comput. Chem. 2014, 35, 1036–1044.
  • 23.Katritzky, A.R.; Lobanov, V.S.; Karelson, M. Chem. Soc. Rev. 1995, 24, 279-287. 24.Worth, A.P.; Bassan, A.; De Bruijn, J.; Gallegos Saliner, A.; Netzeva, T.; Patlewicz, G.; Tsakovska, I.; Eisenreich, S. SAR. QSAR. Environ. Res. 2007, 18, 111-125.
  • 25.Kherouf, S.; Bouarra, N.; Messadi, D. Int. J. Chem. Technol. 2019, 3, 121-128.
  • 26.Bouarra, N.; Nadji, N.; Nouri, L.; Boudjemaa, A.; Bachari, K.; Messadi, D. J. Serb. Chem. Soc. 2021, 86, 63-75.
  • 27.Bouarra N.; Nadji N.; Kherouf S.; Nouri L.; Boudjemaa A.; Bachari K.; Messadi D. J. Turk. Chem. Soc. A: Chem. 2022, 9, 709-720.
  • 28.Gramatica, P.; Giani, E.; Papa, E. J. Mol. Graph. Model. 2007, 25, 755-766.
  • 29.Bouarra, N.; Nadji, N.; Nouri, L.; Boudjemaa, A.; Bachari, K.; Messadi, D. Alg. J. Env. Sc. Tech, 2021, 7, 2013-2023.
  • 30.Fissa, M. R.; Lahiouel, Y.; Khaouane, L.; Hanini, S. J. Mol. Graph. Model. 2019, 87, 109-120.
  • 31.Quang, N. M.; Mau, T. X.; Nhung, N. T. A.; An, T. N. M.; Van Tat, P. J. Mol.Struct. 2019, 1195, 95-109.
  • 32.Moshayedi, S.; Shafiei, F.; Momeni Isfahani, T. Int. J. Quantum. Chem. 2022, 122, e27003.
  • 33.Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Nature, 1986, 323, 533-536.
  • 34.Carbó‐Dorca, R. ;Gallegos, A., & Sánchez, Á. J. J. comp. Chem. 2009,30, 1146-1159.
  • 35.Consonni, V.; Todeschini, R.; Pavan, M. J. Chem. Inf. Comput. Sci. 2002, 42, 682-692.
  • 36.Todeschini, R.; Gramatica, P. Quant. Struct.‐Act. Relat. 1997, 16, 113-119.
  • 37.Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics, Wiley-VCH, New York, 2009.
  • 38.Bocaz-Beneventi, G.; Latorre, R.; Farková, M.; Havel, J. Anal. Chim. Acta. 2002, 452, 47–63.
  • 39.Sheela, K. G.; Deepa, S. N. Math.prob.eng. 2013, 2013,1-11.
  • 40.OECD. Principles for the validation, for regulatory purposes, of (quantitative) structure activity relationship models. In: 37th joint meeting of the chemicals committee and working party on chemicals, pesticides and biotechnology. Paris, France: Organisation for Economic Cooperation and Development, OECD; 2007. 41.Katritzky, R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.; Karelson, M.; Cryst. Growth Des. 2001, 1, 261-265.
  • 42.Dearden, J. C. Sci. Total Environ. 1991, 109/110, 59-68.
  • 43.Kitaigorodsky, A. I. In Molecular Crystals and Molecules; Loebl, E. M., Ed.; Academic Press: New York, 1973.
  • 44.Steinstrasser, R.; Pohl, L. Angew. Chem., Int. Ed. Engl. 1973, 12, 617-630.
There are 41 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Nabil Bouarra 0000-0001-5438-8678

Soumaya Kherouf 0000-0001-9797-3746

Djelloul Messadi 0000-0001-5519-2685

Early Pub Date September 9, 2024
Publication Date
Submission Date November 3, 2023
Acceptance Date September 4, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Bouarra, N., Kherouf, S., & Messadi, D. (2024). QSPR-based prediction model for the melting point of polycyclic aromatic hydrocarbons using MLR and ANN methods. International Journal of Chemistry and Technology, 8(2), 128-136. https://doi.org/10.32571/ijct.1385432
AMA Bouarra N, Kherouf S, Messadi D. QSPR-based prediction model for the melting point of polycyclic aromatic hydrocarbons using MLR and ANN methods. Int. J. Chem. Technol. September 2024;8(2):128-136. doi:10.32571/ijct.1385432
Chicago Bouarra, Nabil, Soumaya Kherouf, and Djelloul Messadi. “QSPR-Based Prediction Model for the Melting Point of Polycyclic Aromatic Hydrocarbons Using MLR and ANN Methods”. International Journal of Chemistry and Technology 8, no. 2 (September 2024): 128-36. https://doi.org/10.32571/ijct.1385432.
EndNote Bouarra N, Kherouf S, Messadi D (September 1, 2024) QSPR-based prediction model for the melting point of polycyclic aromatic hydrocarbons using MLR and ANN methods. International Journal of Chemistry and Technology 8 2 128–136.
IEEE N. Bouarra, S. Kherouf, and D. Messadi, “QSPR-based prediction model for the melting point of polycyclic aromatic hydrocarbons using MLR and ANN methods”, Int. J. Chem. Technol., vol. 8, no. 2, pp. 128–136, 2024, doi: 10.32571/ijct.1385432.
ISNAD Bouarra, Nabil et al. “QSPR-Based Prediction Model for the Melting Point of Polycyclic Aromatic Hydrocarbons Using MLR and ANN Methods”. International Journal of Chemistry and Technology 8/2 (September 2024), 128-136. https://doi.org/10.32571/ijct.1385432.
JAMA Bouarra N, Kherouf S, Messadi D. QSPR-based prediction model for the melting point of polycyclic aromatic hydrocarbons using MLR and ANN methods. Int. J. Chem. Technol. 2024;8:128–136.
MLA Bouarra, Nabil et al. “QSPR-Based Prediction Model for the Melting Point of Polycyclic Aromatic Hydrocarbons Using MLR and ANN Methods”. International Journal of Chemistry and Technology, vol. 8, no. 2, 2024, pp. 128-36, doi:10.32571/ijct.1385432.
Vancouver Bouarra N, Kherouf S, Messadi D. QSPR-based prediction model for the melting point of polycyclic aromatic hydrocarbons using MLR and ANN methods. Int. J. Chem. Technol. 2024;8(2):128-36.