Araştırma Makalesi
BibTex RIS Kaynak Göster

EXHAUST FLUE GAS HEAT RECOVERY POTENTIAL OF HEATING BOILERS OF BUILDINGS

Yıl 2021, Cilt: 6 Sayı: 2, 60 - 72, 31.10.2021

Öz

In this study, the heat recovery potential from the flue gases of the boiler in a central heating system building was investigated. The energy consumption of the building was calculated from Turkish Insulation Standard TS 825 for the example building for the four climate zone. Natural gas is used as fuel. Calculations have been made based on the outdoor temperature. The flue heat energy recovery potential of using natural gas in boilers changes depending on the dew point temperature of the flue gases. The excess air coefficient of the heating boilers is taken as 1.1 and 1.6 for natural gas. The flue gas temperature has been accepted as 150 and 200 0C. As a result, the energy potential of the flue gases, depending on the excess air coefficient and the temperatures of the flue gases, was investigated by using combustion equations. As a result, it was determined that the 50 0C change in the flue temperature was 53% and the 0.5 change in the excess air coefficient was 41% effective on the potential of heat energy recovered from the flue gas.

Kaynakça

  • [1] Terhan, M., & Comakli, K. (2017). Energy and exergy analyses of natural gas-fired boilers in a district heating system. Appl. Therm. Eng., 121, 380-387.
  • [2] Terhan M.; 2010, Atatürk Üniversitesi Isıtma Sistemi Kazan Bacalarında Isı Geri Kazanım Potansiyelin Araştırılması, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı.
  • [3] Terhan, M., & Comakli, K. (2016). Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Appl Therm Eng., 100, 1007-1015.
  • [4] Wei, M., Fu, L., Zhang, S., & Zhao, X. (2019). Experimental investigation on vapor-pump equipped gas boiler for flue gas heat recovery. Appl Therm Eng., 147, 371-379.
  • [5] Lu, D., Chen, G., Gong, M., Bai, Y., Xu, Q., Zhao, Y., ... & Shen, J. (2019). Thermodynamic and economic analysis of a gas-fired absorption heat pump for district heating with cascade recovery of flue gas waste heat. Energy Convers Manag., 185, 87-100.
  • [6] Wei, M., Zhao, X., Fu, L., & Zhang, S. (2017). Performance study and application of new coal-fired boiler flue gas heat recovery system. Appl Energy, 188, 121-129.
  • [7] Xu, X., Wu, L., & Ju, G. (2019). Structural optimization and experimental study of plate low pressure economizer with intermediate passage. Appl Therm Eng., 151, 328-334.
  • [8] Niu, Y., Hua, J., & Fan, H. (2017). Optimization of solution heat exchanger of AHP in flue gas waste heat recovery. Procedia Eng., 205, 477-484.
  • [9] Thiyagu, S., Naveen, T. K., Siddharthan, B., & Manirathnam, A. S. (2020). Numerical investigation and performance enhancement of 210 MW boiler by utilization of waste heat in flue gas. Materials Today: Proceedings, 33, 756-762.
  • [10] Bukowska, M., Nowak, K., Proszak-Miąsik, D., & Rabczak, S. (2017, October). Concept of heat recovery from exhaust gases. In IOP Conference Series: Materials Science and Engineering (Vol. 245, No. 5, p. 052057). IOP Publishing.
  • [11] Fialko, N., Navrodska, R., Ulewicz, M., Gnedash, G., Alioshko, S., & Shevcuk, S. (2019). Environmental aspects of heat recovery systems of boiler plants. In E3S Web of Conferences (Vol. 100, p. 00015). EDP Sciences.
  • [12] Zhao, X., Fu, L., Sun, T., Wang, J. Y., & Wang, X. Y. (2017). The recovery of waste heat of flue gas from gas boilers. Sci Technol Built Environ., 23(3), 490-499.
  • [13] TERHAN, M. Yoğuşmalı Isı Geri Kazanım Cihazlarının Tasarımına Çiğlenme Noktası Sıcaklıklarının Etkisinin Yakıt Tiplerine Göre Araştırılması. Politeknik Dergisi, 24(1), 31-38.
  • [14] Yalçın S. E., 2006, Buhar Kazanlarının Eksergoekonomik Çözümlemesi, Yüksek Lisans Tezi İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [15] Kon O., Yüksel B., Kazanlarda Yakıt ve Yanma Havasına Bağlı Yanma Gazlarının Özelliklerindeki Değişim, 13 .Uluslararası Yanma Sempozyumu, 9-11 Eylül 2015, Bursa, Türkiye.
  • [16] TS 825, Binalarda Isı Yalıtım Kuralları, Türk Standardı, Mayıs 2008.
  • [17] Çay, Y., & Gürel, A. E. (2013). Determination of optimum insulation thickness, energy savings, and environmental impact for different climatic regions of Turkey. Environ Prog Sustain Energy, 32(2), 365-372.
  • [18] Ozel, M. (2013). Thermal, economical and environmental analysis of insulated building walls in a cold climate. Energy Convers Manag., 76, 674-684.
  • [19] Çengel Y. A. ve Boles M. A., 2002, Mühendislik Yaklaşımıyla Termodinamik, Türkçesi: Derbentli T., Literatür Yayıncılık, İstanbul.
  • [20] Doğal Gaz-LPG Tesisatı ve Bacalar, 2003, ISISAN Yayınları No: 345.
Yıl 2021, Cilt: 6 Sayı: 2, 60 - 72, 31.10.2021

Öz

Kaynakça

  • [1] Terhan, M., & Comakli, K. (2017). Energy and exergy analyses of natural gas-fired boilers in a district heating system. Appl. Therm. Eng., 121, 380-387.
  • [2] Terhan M.; 2010, Atatürk Üniversitesi Isıtma Sistemi Kazan Bacalarında Isı Geri Kazanım Potansiyelin Araştırılması, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı.
  • [3] Terhan, M., & Comakli, K. (2016). Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Appl Therm Eng., 100, 1007-1015.
  • [4] Wei, M., Fu, L., Zhang, S., & Zhao, X. (2019). Experimental investigation on vapor-pump equipped gas boiler for flue gas heat recovery. Appl Therm Eng., 147, 371-379.
  • [5] Lu, D., Chen, G., Gong, M., Bai, Y., Xu, Q., Zhao, Y., ... & Shen, J. (2019). Thermodynamic and economic analysis of a gas-fired absorption heat pump for district heating with cascade recovery of flue gas waste heat. Energy Convers Manag., 185, 87-100.
  • [6] Wei, M., Zhao, X., Fu, L., & Zhang, S. (2017). Performance study and application of new coal-fired boiler flue gas heat recovery system. Appl Energy, 188, 121-129.
  • [7] Xu, X., Wu, L., & Ju, G. (2019). Structural optimization and experimental study of plate low pressure economizer with intermediate passage. Appl Therm Eng., 151, 328-334.
  • [8] Niu, Y., Hua, J., & Fan, H. (2017). Optimization of solution heat exchanger of AHP in flue gas waste heat recovery. Procedia Eng., 205, 477-484.
  • [9] Thiyagu, S., Naveen, T. K., Siddharthan, B., & Manirathnam, A. S. (2020). Numerical investigation and performance enhancement of 210 MW boiler by utilization of waste heat in flue gas. Materials Today: Proceedings, 33, 756-762.
  • [10] Bukowska, M., Nowak, K., Proszak-Miąsik, D., & Rabczak, S. (2017, October). Concept of heat recovery from exhaust gases. In IOP Conference Series: Materials Science and Engineering (Vol. 245, No. 5, p. 052057). IOP Publishing.
  • [11] Fialko, N., Navrodska, R., Ulewicz, M., Gnedash, G., Alioshko, S., & Shevcuk, S. (2019). Environmental aspects of heat recovery systems of boiler plants. In E3S Web of Conferences (Vol. 100, p. 00015). EDP Sciences.
  • [12] Zhao, X., Fu, L., Sun, T., Wang, J. Y., & Wang, X. Y. (2017). The recovery of waste heat of flue gas from gas boilers. Sci Technol Built Environ., 23(3), 490-499.
  • [13] TERHAN, M. Yoğuşmalı Isı Geri Kazanım Cihazlarının Tasarımına Çiğlenme Noktası Sıcaklıklarının Etkisinin Yakıt Tiplerine Göre Araştırılması. Politeknik Dergisi, 24(1), 31-38.
  • [14] Yalçın S. E., 2006, Buhar Kazanlarının Eksergoekonomik Çözümlemesi, Yüksek Lisans Tezi İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [15] Kon O., Yüksel B., Kazanlarda Yakıt ve Yanma Havasına Bağlı Yanma Gazlarının Özelliklerindeki Değişim, 13 .Uluslararası Yanma Sempozyumu, 9-11 Eylül 2015, Bursa, Türkiye.
  • [16] TS 825, Binalarda Isı Yalıtım Kuralları, Türk Standardı, Mayıs 2008.
  • [17] Çay, Y., & Gürel, A. E. (2013). Determination of optimum insulation thickness, energy savings, and environmental impact for different climatic regions of Turkey. Environ Prog Sustain Energy, 32(2), 365-372.
  • [18] Ozel, M. (2013). Thermal, economical and environmental analysis of insulated building walls in a cold climate. Energy Convers Manag., 76, 674-684.
  • [19] Çengel Y. A. ve Boles M. A., 2002, Mühendislik Yaklaşımıyla Termodinamik, Türkçesi: Derbentli T., Literatür Yayıncılık, İstanbul.
  • [20] Doğal Gaz-LPG Tesisatı ve Bacalar, 2003, ISISAN Yayınları No: 345.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Okan Kon 0000-0002-5166-0258

İsmail Caner 0000-0003-1232-649X

Yayımlanma Tarihi 31 Ekim 2021
Kabul Tarihi 9 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kon, O., & Caner, İ. (2021). EXHAUST FLUE GAS HEAT RECOVERY POTENTIAL OF HEATING BOILERS OF BUILDINGS. The International Journal of Energy and Engineering Sciences, 6(2), 60-72.

IMPORTANT NOTES

No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, without the prior written permission of the copyright owners, unless the use is a fair dealing for the purpose of private study, research or review. The authors reserve the right that their material can be used for purely educational and research purposes. All the authors are responsible for the originality and plagiarism, multiple publication, disclosure and conflicts of interest and fundamental errors in the published works.

*Please note that  All the authors are responsible for the originality and plagiarism, multiple publication, disclosure and conflicts of interest and fundamental errors in the published works. Author(s) submitting a manuscript for publication in IJEES also accept that the manuscript may go through screening for plagiarism check using IThenticate software. For experimental works involving animals, approvals from relevant ethics committee should have been obtained beforehand assuring that the experiment was conducted according to relevant national or international guidelines on care and use of laboratory animals.  Authors may be requested to provide evidence to this end.
 
**Authors are highly recommended to obey the IJEES policies regarding copyrights/Licensing and ethics before submitting their manuscripts.


Copyright © 2023. AA. All rights reserved