Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 7 Sayı: 3, 229 - 246, 15.10.2022
https://doi.org/10.26833/ijeg.975204

Öz

Destekleyen Kurum

Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

191419001

Teşekkür

Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü'ne doktora tez projesi desteklerinden dolayı, CORS-TR Sisteminin kullanımından dolayı Tapu ve Kadastro Genel Müdürlüğü'ne ve Sistem A.Ş.'ye Leica Geo Office 8.4 yazılımının lisansını sağladığı için müteşekkiriz.

Kaynakça

  • Brown N, Geisler I & Troyer L (2006). RTK Rover Performance using the Master-Auxiliary Concept, Journal of Global Positioning Systems, 5(1-2), 135-144, Springer Open.
  • Cander L R (2012). Total Electron Content Modelling for Space Weather Applications, 6. GNSS Vulnerabilities and Solutions Conference, 21 – 24 May 2012, Croatia.
  • Cina A, Dabove P, Manzino A M & Piras M (2015). Network Real Time Kinematic (NRTK) Positioning – Description, Architectures and Performances. In: Jin S (ed), Satellite Positioning Methods, Models and Applications, Published by AvE4EvA, 23-45.
  • Cingöz A, Yıldırım Ö, Eren K, Uzel T, Lenk O, Gürdal M A, Bakıcı S & Aktuğ B (2009). Sürekli Gözlem Yapan GPS İstasyonları Ağı ve Ulusal Datum Dönüşümü Projesi (TUSAGA-Aktif/CORS-TR).
  • CORS-TR Application Report (2006). TÜBİTAK Ulusal CORS (Sürekli Gözlem Yapan GPS İstasyonu) Sisteminin Kurulması (Ulusal Datum Dönüşümü) Projesi, Project No: 105G017.
  • CORS-TR Official Webpage (2021a). Access address https://www.tusaga-aktif.gov.tr/ (Date of access: 27 July 2021).
  • CORS-TR Official Webpage (2021b). Access address https://www.tusagaaktif.gov.tr/Sayfalar/IstasyonHaritasi.aspx (Date of access: 27 July 2021).
  • Çelebi H (2007). Mühendisler İçin İstatistik Yöntemler ve Uygulamalar, Mersin University Faculty of Engineering, Department of Geological Engineering Lecture Notes, 92 – 93, Mersin, Turkey.
  • El-Eraki M A, Lethy A, Samy A & Deebes H A (2018). The disturbance storm time (Dst) index prediction using time delay neural network during some extreme geomagnetic storms, Academia Journal of Scientific Research, 6(7), 295 – 302, Academia Publishing.
  • El-Mowafy A (2012). Precise Real-Time Positioning Using Network RTK. In: Jin S (ed), Global Navigation Satellite Systems Signal, Theory and Applications, 1st edition, 161-188, InTech Publications, Croatia.
  • ESA Official Webpage (2021). Access address https://gssc.esa.int/navipedia//index.php/GLONASS_Future_and_Evolutions#Ground_Segment (Date of access: 27 July 2021).
  • Euler H J, Keenan C R, Zebhauser B E & Wübbena G (2001). Study of a Simplified Approach in Utilizing Information From Permanent Reference Station Arrays, Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2001), September 2001, 379-391, Salt Lake City, UT, USA.
  • Geng J & Shi C (2017). Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously, Journal of Geodesy, Vol: 91, 361–374, Springer Link.
  • Geng J, Meng X, Teferle F N & Dodson A H (2010). Performance of precise point positioning with ambiguity resolution for 1-to 4-hour observation periods, Survey Review, Vol: 42, No: 316, 155-165, Faculty of Environment, The West of England University, UK.
  • GLONASS Official Webpage (2021). Access address https://www.glonass-iac.ru/GLONASS/index.php (Date of access: 27 July 2021).
  • GPS Official Webpage (2021). Access address https://www.gps.gov/systems/gps/space/ (Date of access: 27 July 2021).
  • Gündüz A M (2013). Klasik RTK ve Ağ-RTK Yöntemlerinin Karşılaştırılması, Master’s Thesis, Selcuk University, Institute of Science, Konya, Turkey.
  • Higuchi H, Saito M, Iwahashi T & Usui S (2004). Network based high accuracy realtime GPS positioning for GCP correction of high resolution satellite imagery, International Geoscience and Remote Sensing Symposium, 20-24 Sept. 2004, Anchorage, AK, USA, https://doi.org/10.1109/IGARSS.2004.1369979
  • Hu G R, Khoo H S, Goh P C & Law C L (2003). Development and assessment of GPS virtual reference stations for RTK positioning, Journal of Geodesy, Vol: 77, 292–302, Springer Link.
  • İçen E (2018). Küresel ve Bölgesel Konumlama Sistemleri, Teknolojileri ve Uygulamaları, Aviation and Space Technologies Thesis, General Directorate of Aviation and Space Technologies, Ministry of Transport, Maritime Affairs, and Communications, 42 – 58, Ankara, Turkey.
  • İnyurt S & Şentürk E (2020). Manyetik Fırtına Kaynaklı İyonosferik Değişimlerin GNSS Ölçümleri Kullanılarak İrdelenmesi, BEU Journal of Science, 9(1), 288 – 296, Bitlis, Turkey.
  • ISGI Official Webpage (2021). Access address http://isgi.unistra.fr/data_plot.php (Date of access: 24 August 2020).
  • Janssen V (2009). A comparison of the VRS and MAC principles for network RTK, International Global Navigation Satellite Systems Society IGNSS Symposium 2009, 1 – 3 December 2009, Qld, Australia.
  • Kahveci M (2017). Kinematik GNSS ve RTK CORS Ağları, 2. Edition, Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., No: 1813, Ankara, Turkey.
  • Kahveci M & Yıldız F (2017). GNSS Uydularla Konum Belirleme Sistemleri Teori – Uygulama, 8. Edition, Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., No:363, Ankara, Turkey.
  • Kalaycı İ (2003). GPS Destekli Detay Alımında Yeni Bir Teknik (GPSSİT)’in Uygulanabilirliğinin Araştırılması, Doctoral Thesis, Selcuk University, Institute of Science, Konya, Turkey.
  • Landau H, Vollath U & Chen X (2002). Virtual Reference Station Systems, Journal of Global Positioning Systems, Vol: 1, No: 2, 137-143, Springer Open.
  • Mekik Ç (2010). Global Uydu Navigasyon Sistemleri ve Uydu Bazlı Alan Büyütme Sistemleri, CeBIT - Eurasia 2010, Geographical Information Technologies Workshop, 8 October 2010, Istanbul, Turkey.
  • Navidi W (2011). Statistics For Engineers And Scientists, Third Edition, Published by McGraw-Hill, A business unit of The McGraw-Hill Companies, Inc., 241 – 248, USA.
  • Öğütcü S S (2014). Gerçek Zamanlı Kinematik (RTK) Uygulamalarında Ağ Bazlı Tekniklerin Doğruluk Analizleri, Master’s Thesis, Necmettin Erbakan University, Institute of Science, Konya, Turkey.
  • Öğütcü S S (2017). Ağ Bazlı RTK Tekniklerinin (VRS, FKP, MAC) Baz Uzunluğu ve Epok Sayısına Bağlı Doğruluk ve Duyarlık Modellerinin Oluşturulması Üzerine Bir Çalışma, Doctoral Thesis, Necmettin Erbakan University, Institute of Science, Konya, Turkey.
  • Öğütcü S (2018). Temporal correlation length of network based rtk techniques, Measurement, Vol: 134, Elsevier, 539-547, https://doi.org/10.1016/j.measurement.2018.10.099
  • Öğütcü S & Kalaycı İ (2016). Investigation of network-based RTK techniques: a case study in urban area, Arabian Journal of Geosciences, Vol: 9, No: 199, Springer Link, https://doi.org/10.1007/s12517-015-2262-0
  • Öğütcü S & Kalaycı İ (2018). Accuracy and precision of network-based RTK techniques as a function of baseline distance and occupation time, Arabian Journal of Geosciences, Vol: 11, No: 354, Springer Link, https://doi.org/10.1007/s12517-018-3712-2
  • Qasim M & Tusat E (2018). Analysis of the Effect of Data Intervals on GNSS Processing, FIG Congress 2018, May 6–11, 2018, Istanbul, Turkey.
  • Pektaş F (2010). Gerçek Zamanlı Ulusal ve Yerel Sabit GNSS Ağlarına Dayalı Kinematik Konumlama (TUSAGA-Aktif – İSKİ-UKBS Ağlarının Yerel Ölçekte Karşılaştırılması), Master’s Thesis, Yıldız Teknik University, Institute of Science, Istanbul, Turkey.
  • Revnivykh S, Bolkunov A, Serdyukov A & Montenbruck O (2017). GLONASS. In: Teunissen PJG, Montenbruck O (ed), Springer Handbook of Global Navigation Satellite Systems, 219-245, Springer International Publishing, Switzerland.
  • Stoyanova N, Feairheller S & Terrill B (2017). GLONASS. In: Kaplan ED, Hegarty CJ (ed), Understanding GPS/GNSS Principles and Applications, Third Edition, 191-216, Artech House Publications, USA.
  • Tusat E (2018). A Comparison of the Accuracy of VRS and Static GPS Measurement Results for Production of Topographic Map and Spatial Data: A Case Study on CORS-TR, Technical Gazette, Vol: 25, No: 1, 158-163, https://doi.org/10.17559/TV-20160406110412
  • Vollath U, Buecherl A, Landau H, Pagels C & Wagner B (2000). Multi-Base RTK Positioning Using Virtual Reference Stations, Proccedings of 13th International Technical Meeting of the Satellite Devision of The Institute of Navigation (ION GPS 2000), 123-131, Salt Lake City, USA.
  • Wübbenna G, Bagge A & Schmitz M (2001). Network–Based Techniques for RTK Applications, GPS Society, Japan Institute of Navigation, 14 – 16 November 2001, Tokyo, Japan.
  • Wübbena G & Bagge A (2006). RTCM Message Type 59-FKP for transmission of FKP, Geo++ White Paper, Nr: 2006.01, Garbsen, Germany.
  • Yalçın B (2007). Yerel Bir Ağda GPS Ölçü Süresinin Nokta Konum Doğruluğuna Etkisinin Araştırılması, Master’s Thesis, Selçuk University, Institute of Science, Konya, Turkey.
  • Yıldırım Ö, Bakıcı S & Mekik Ç (2011). TUSAGA-Aktif (CORS-TR) Sisteminin Tapu ve Kadastro Genel Müdürlüğüne Katkıları, HKM Geodesy, Geoinformation and Land Management Journal, 2011/2 Special Issue, 134-139, Ankara, Turkey.
  • Yılmaz M (2020). Farklı Uydu Yükseklik Açılarında Ağ-RTK Düzeltme Tekniklerinin Performanslarının İncelenmesi, Master’s Thesis, Gebze Technical University, Institute of Science, Gebze, Turkey.
  • Yüksel H (2015) Gerçek Zamanlı Sabit GNSS Referans Ağlarının (CORS) Baz Uzunluğuna Bağlı Doğruluk Analizi: TUSAGA-Aktif Örneği, Master’s Thesis, Yıldız Technical University, Institute of Science, Istanbul, Turkey.

The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances

Yıl 2022, Cilt: 7 Sayı: 3, 229 - 246, 15.10.2022
https://doi.org/10.26833/ijeg.975204

Öz

GLONASS system; It has become the second system operating on a global scale after the GPS system in the world, after completing the satellite constellation and using it at full capacity as of 8 December 2011. Due to the increasing need for high accuracy and precision real-time location information, CORS networks have become widespread in the world. In Turkey, it was established as CORS-TR and opened for use in December 2008. Comprehensive studies investigating the effects of Network-Based RTK techniques (VRS, FKP, and MAC) in the CORS-TR network are very limited due to the fact that the GLONASS system has been used at full capacity recently. In this paper, it is aimed to determine the effect of measurements derived from the Network-Based RTK techniques in the CORS-TR network of the GLONASS system on the location accuracy, and thus to make a business plan according to the accuracy and precision requirements of all civil and military users. For this purpose, simultaneous measurements were made with 6 GNSS receiver devices of the same brand and model. A total of 308,908 epoch data (northing value, easting value, and ellipsoidal height: projection coordinates (ITRF96 Datum, 2005.00 Reference Epoch)) were collected at one-second intervals in each technique and for seven days of measurements. As a result of the evaluation and analysis of the data sets obtained with the measurements; It has been observed that the GLONASS system has a positive effect on position accuracy, but in some cases, it also has disruptive effects. It has been observed that the most important contribution is to increase the number of visible satellites and to enable measurements with GLONASS satellites in cases where GPS satellites alone are not sufficient, especially in areas where the satellite elevation angle is narrowed, such as city centers, and forest areas.

Proje Numarası

191419001

Kaynakça

  • Brown N, Geisler I & Troyer L (2006). RTK Rover Performance using the Master-Auxiliary Concept, Journal of Global Positioning Systems, 5(1-2), 135-144, Springer Open.
  • Cander L R (2012). Total Electron Content Modelling for Space Weather Applications, 6. GNSS Vulnerabilities and Solutions Conference, 21 – 24 May 2012, Croatia.
  • Cina A, Dabove P, Manzino A M & Piras M (2015). Network Real Time Kinematic (NRTK) Positioning – Description, Architectures and Performances. In: Jin S (ed), Satellite Positioning Methods, Models and Applications, Published by AvE4EvA, 23-45.
  • Cingöz A, Yıldırım Ö, Eren K, Uzel T, Lenk O, Gürdal M A, Bakıcı S & Aktuğ B (2009). Sürekli Gözlem Yapan GPS İstasyonları Ağı ve Ulusal Datum Dönüşümü Projesi (TUSAGA-Aktif/CORS-TR).
  • CORS-TR Application Report (2006). TÜBİTAK Ulusal CORS (Sürekli Gözlem Yapan GPS İstasyonu) Sisteminin Kurulması (Ulusal Datum Dönüşümü) Projesi, Project No: 105G017.
  • CORS-TR Official Webpage (2021a). Access address https://www.tusaga-aktif.gov.tr/ (Date of access: 27 July 2021).
  • CORS-TR Official Webpage (2021b). Access address https://www.tusagaaktif.gov.tr/Sayfalar/IstasyonHaritasi.aspx (Date of access: 27 July 2021).
  • Çelebi H (2007). Mühendisler İçin İstatistik Yöntemler ve Uygulamalar, Mersin University Faculty of Engineering, Department of Geological Engineering Lecture Notes, 92 – 93, Mersin, Turkey.
  • El-Eraki M A, Lethy A, Samy A & Deebes H A (2018). The disturbance storm time (Dst) index prediction using time delay neural network during some extreme geomagnetic storms, Academia Journal of Scientific Research, 6(7), 295 – 302, Academia Publishing.
  • El-Mowafy A (2012). Precise Real-Time Positioning Using Network RTK. In: Jin S (ed), Global Navigation Satellite Systems Signal, Theory and Applications, 1st edition, 161-188, InTech Publications, Croatia.
  • ESA Official Webpage (2021). Access address https://gssc.esa.int/navipedia//index.php/GLONASS_Future_and_Evolutions#Ground_Segment (Date of access: 27 July 2021).
  • Euler H J, Keenan C R, Zebhauser B E & Wübbena G (2001). Study of a Simplified Approach in Utilizing Information From Permanent Reference Station Arrays, Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2001), September 2001, 379-391, Salt Lake City, UT, USA.
  • Geng J & Shi C (2017). Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously, Journal of Geodesy, Vol: 91, 361–374, Springer Link.
  • Geng J, Meng X, Teferle F N & Dodson A H (2010). Performance of precise point positioning with ambiguity resolution for 1-to 4-hour observation periods, Survey Review, Vol: 42, No: 316, 155-165, Faculty of Environment, The West of England University, UK.
  • GLONASS Official Webpage (2021). Access address https://www.glonass-iac.ru/GLONASS/index.php (Date of access: 27 July 2021).
  • GPS Official Webpage (2021). Access address https://www.gps.gov/systems/gps/space/ (Date of access: 27 July 2021).
  • Gündüz A M (2013). Klasik RTK ve Ağ-RTK Yöntemlerinin Karşılaştırılması, Master’s Thesis, Selcuk University, Institute of Science, Konya, Turkey.
  • Higuchi H, Saito M, Iwahashi T & Usui S (2004). Network based high accuracy realtime GPS positioning for GCP correction of high resolution satellite imagery, International Geoscience and Remote Sensing Symposium, 20-24 Sept. 2004, Anchorage, AK, USA, https://doi.org/10.1109/IGARSS.2004.1369979
  • Hu G R, Khoo H S, Goh P C & Law C L (2003). Development and assessment of GPS virtual reference stations for RTK positioning, Journal of Geodesy, Vol: 77, 292–302, Springer Link.
  • İçen E (2018). Küresel ve Bölgesel Konumlama Sistemleri, Teknolojileri ve Uygulamaları, Aviation and Space Technologies Thesis, General Directorate of Aviation and Space Technologies, Ministry of Transport, Maritime Affairs, and Communications, 42 – 58, Ankara, Turkey.
  • İnyurt S & Şentürk E (2020). Manyetik Fırtına Kaynaklı İyonosferik Değişimlerin GNSS Ölçümleri Kullanılarak İrdelenmesi, BEU Journal of Science, 9(1), 288 – 296, Bitlis, Turkey.
  • ISGI Official Webpage (2021). Access address http://isgi.unistra.fr/data_plot.php (Date of access: 24 August 2020).
  • Janssen V (2009). A comparison of the VRS and MAC principles for network RTK, International Global Navigation Satellite Systems Society IGNSS Symposium 2009, 1 – 3 December 2009, Qld, Australia.
  • Kahveci M (2017). Kinematik GNSS ve RTK CORS Ağları, 2. Edition, Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., No: 1813, Ankara, Turkey.
  • Kahveci M & Yıldız F (2017). GNSS Uydularla Konum Belirleme Sistemleri Teori – Uygulama, 8. Edition, Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., No:363, Ankara, Turkey.
  • Kalaycı İ (2003). GPS Destekli Detay Alımında Yeni Bir Teknik (GPSSİT)’in Uygulanabilirliğinin Araştırılması, Doctoral Thesis, Selcuk University, Institute of Science, Konya, Turkey.
  • Landau H, Vollath U & Chen X (2002). Virtual Reference Station Systems, Journal of Global Positioning Systems, Vol: 1, No: 2, 137-143, Springer Open.
  • Mekik Ç (2010). Global Uydu Navigasyon Sistemleri ve Uydu Bazlı Alan Büyütme Sistemleri, CeBIT - Eurasia 2010, Geographical Information Technologies Workshop, 8 October 2010, Istanbul, Turkey.
  • Navidi W (2011). Statistics For Engineers And Scientists, Third Edition, Published by McGraw-Hill, A business unit of The McGraw-Hill Companies, Inc., 241 – 248, USA.
  • Öğütcü S S (2014). Gerçek Zamanlı Kinematik (RTK) Uygulamalarında Ağ Bazlı Tekniklerin Doğruluk Analizleri, Master’s Thesis, Necmettin Erbakan University, Institute of Science, Konya, Turkey.
  • Öğütcü S S (2017). Ağ Bazlı RTK Tekniklerinin (VRS, FKP, MAC) Baz Uzunluğu ve Epok Sayısına Bağlı Doğruluk ve Duyarlık Modellerinin Oluşturulması Üzerine Bir Çalışma, Doctoral Thesis, Necmettin Erbakan University, Institute of Science, Konya, Turkey.
  • Öğütcü S (2018). Temporal correlation length of network based rtk techniques, Measurement, Vol: 134, Elsevier, 539-547, https://doi.org/10.1016/j.measurement.2018.10.099
  • Öğütcü S & Kalaycı İ (2016). Investigation of network-based RTK techniques: a case study in urban area, Arabian Journal of Geosciences, Vol: 9, No: 199, Springer Link, https://doi.org/10.1007/s12517-015-2262-0
  • Öğütcü S & Kalaycı İ (2018). Accuracy and precision of network-based RTK techniques as a function of baseline distance and occupation time, Arabian Journal of Geosciences, Vol: 11, No: 354, Springer Link, https://doi.org/10.1007/s12517-018-3712-2
  • Qasim M & Tusat E (2018). Analysis of the Effect of Data Intervals on GNSS Processing, FIG Congress 2018, May 6–11, 2018, Istanbul, Turkey.
  • Pektaş F (2010). Gerçek Zamanlı Ulusal ve Yerel Sabit GNSS Ağlarına Dayalı Kinematik Konumlama (TUSAGA-Aktif – İSKİ-UKBS Ağlarının Yerel Ölçekte Karşılaştırılması), Master’s Thesis, Yıldız Teknik University, Institute of Science, Istanbul, Turkey.
  • Revnivykh S, Bolkunov A, Serdyukov A & Montenbruck O (2017). GLONASS. In: Teunissen PJG, Montenbruck O (ed), Springer Handbook of Global Navigation Satellite Systems, 219-245, Springer International Publishing, Switzerland.
  • Stoyanova N, Feairheller S & Terrill B (2017). GLONASS. In: Kaplan ED, Hegarty CJ (ed), Understanding GPS/GNSS Principles and Applications, Third Edition, 191-216, Artech House Publications, USA.
  • Tusat E (2018). A Comparison of the Accuracy of VRS and Static GPS Measurement Results for Production of Topographic Map and Spatial Data: A Case Study on CORS-TR, Technical Gazette, Vol: 25, No: 1, 158-163, https://doi.org/10.17559/TV-20160406110412
  • Vollath U, Buecherl A, Landau H, Pagels C & Wagner B (2000). Multi-Base RTK Positioning Using Virtual Reference Stations, Proccedings of 13th International Technical Meeting of the Satellite Devision of The Institute of Navigation (ION GPS 2000), 123-131, Salt Lake City, USA.
  • Wübbenna G, Bagge A & Schmitz M (2001). Network–Based Techniques for RTK Applications, GPS Society, Japan Institute of Navigation, 14 – 16 November 2001, Tokyo, Japan.
  • Wübbena G & Bagge A (2006). RTCM Message Type 59-FKP for transmission of FKP, Geo++ White Paper, Nr: 2006.01, Garbsen, Germany.
  • Yalçın B (2007). Yerel Bir Ağda GPS Ölçü Süresinin Nokta Konum Doğruluğuna Etkisinin Araştırılması, Master’s Thesis, Selçuk University, Institute of Science, Konya, Turkey.
  • Yıldırım Ö, Bakıcı S & Mekik Ç (2011). TUSAGA-Aktif (CORS-TR) Sisteminin Tapu ve Kadastro Genel Müdürlüğüne Katkıları, HKM Geodesy, Geoinformation and Land Management Journal, 2011/2 Special Issue, 134-139, Ankara, Turkey.
  • Yılmaz M (2020). Farklı Uydu Yükseklik Açılarında Ağ-RTK Düzeltme Tekniklerinin Performanslarının İncelenmesi, Master’s Thesis, Gebze Technical University, Institute of Science, Gebze, Turkey.
  • Yüksel H (2015) Gerçek Zamanlı Sabit GNSS Referans Ağlarının (CORS) Baz Uzunluğuna Bağlı Doğruluk Analizi: TUSAGA-Aktif Örneği, Master’s Thesis, Yıldız Technical University, Institute of Science, Istanbul, Turkey.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Ömer Yurdakul 0000-0003-2591-9040

İbrahim Kalaycı 0000-0003-1082-0005

Proje Numarası 191419001
Yayımlanma Tarihi 15 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 3

Kaynak Göster

APA Yurdakul, Ö., & Kalaycı, İ. (2022). The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. International Journal of Engineering and Geosciences, 7(3), 229-246. https://doi.org/10.26833/ijeg.975204
AMA Yurdakul Ö, Kalaycı İ. The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. IJEG. Ekim 2022;7(3):229-246. doi:10.26833/ijeg.975204
Chicago Yurdakul, Ömer, ve İbrahim Kalaycı. “The Effect of GLONASS on Position Accuracy in CORS-TR Measurements at Different Baseline Distances”. International Journal of Engineering and Geosciences 7, sy. 3 (Ekim 2022): 229-46. https://doi.org/10.26833/ijeg.975204.
EndNote Yurdakul Ö, Kalaycı İ (01 Ekim 2022) The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. International Journal of Engineering and Geosciences 7 3 229–246.
IEEE Ö. Yurdakul ve İ. Kalaycı, “The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances”, IJEG, c. 7, sy. 3, ss. 229–246, 2022, doi: 10.26833/ijeg.975204.
ISNAD Yurdakul, Ömer - Kalaycı, İbrahim. “The Effect of GLONASS on Position Accuracy in CORS-TR Measurements at Different Baseline Distances”. International Journal of Engineering and Geosciences 7/3 (Ekim 2022), 229-246. https://doi.org/10.26833/ijeg.975204.
JAMA Yurdakul Ö, Kalaycı İ. The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. IJEG. 2022;7:229–246.
MLA Yurdakul, Ömer ve İbrahim Kalaycı. “The Effect of GLONASS on Position Accuracy in CORS-TR Measurements at Different Baseline Distances”. International Journal of Engineering and Geosciences, c. 7, sy. 3, 2022, ss. 229-46, doi:10.26833/ijeg.975204.
Vancouver Yurdakul Ö, Kalaycı İ. The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. IJEG. 2022;7(3):229-46.