Mangrove forests are considered one of the most complex and dynamic ecosystems facing various challenges due to anthropogenic disturbance and climate change. The excessive harvesting and land-use change in areas covered by mangrove ecosystems is critical threats to these forests. Therefore, the continuous and regular monitoring of these forests is essential. Fortunately, remote sensing data has made it possible to regularly and frequently monitor this forest type. This study has two goals. Firstly, it combines optical data of Landsat- 8 and Sentinel-2 with Sentinel-1 radar data to improve land cover mapping accuracy. Secondly, it aims to evaluate the SVM machine learning algorithms and random forest to detection and differentiate forest cover from other land types in the Google Earth Engine system. The results show that the support vector machine (SVM) algorithm in the S2 + S1 dataset with a kappa coefficient of 0.94 performs significantly better than when used in the L8 + S1 combination dataset with a kappa coefficient of 0.88. Conversely, the kappa coefficients of 0.89 and 0.85 were estimated for the random forest algorithm in S2 + S1 and L8 + S1 datasets. This again indicates the superiority of Sentinel-2 and Sentinel-1 datasets over Landsat- 8 and Sentinel-1 datasets. In general, the support vector machine (SVM) algorithm yielded better results than the RF random forest algorithm in optical and radar datasets. The results showed that using the Google Earth engine system and machine learning algorithms accelerates the process of mapping mangrove forests and even change detection.
Mangrove Machine learning Algorithm Google Earth Engine Remote Sensing Qeshm Island
Birincil Dil | İngilizce |
---|---|
Bölüm | Articles |
Yazarlar | |
Erken Görünüm Tarihi | 8 Mayıs 2023 |
Yayımlanma Tarihi | 15 Ekim 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 8 Sayı: 3 |