Research Article
BibTex RIS Cite

Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels

Year 2025, Volume: 10 Issue: 2, 207 - 220
https://doi.org/10.26833/ijeg.1552141

Abstract

In large-scale agricultural crop classification studies (Turkey, Adana, Çukurova Plain, 2500 km²), collecting sufficient and accurate ground truth data is costly, time-consuming, and unsustainable. This study utilized parcels registered in the Farmer Registration System (FRS) as ground truth data. By analyzing time series EVI curves, discrepancies were identified between declared and actual crops. Erroneous parcels were eliminated, and the corrected data were used in the classification process.Using multi-temporal Sentinel-2 images from 2021, this study compared the performance of Random Forests (RF), Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Extreme Gradient Boosting (XGBoost) algorithms for classifying crops like citrus, cotton, maize, peanut, sunflower, watermelon, wheat, and double-crop combinations (e.g., wheat-cotton, wheat-maize). The classification utilized 121 features (11 images × 10 Sentinel-2 bands + EVI). XGBoost achieved the highest overall accuracy (92.14%), followed by RF (89.15%), SVM (86.14%), and ANN (85.48%).The EVI index proved critical, particularly in separating spectral curves of double crops. While single crops like cotton, maize, and wheat yielded high classification accuracy, double crops with overlapping phenological stages had lower accuracy. The study highlighted that crops at distinct phenological stages performed well across algorithms, whereas crops with similar stages struggled to achieve high accuracy.This method of using corrected farmer-declared parcels (FDP) as ground truth data demonstrated high classification performance across all algorithms, proving its reliability. The findings emphasize that FDP can effectively replace traditional field data collection, reducing costs and improving efficiency. This classification approach supports agricultural production monitoring, yield estimation, water resource analysis, and sustainable policy-making, serving as a robust tool for agricultural evaluation

References

  • Şimşek, F.F. (2023). Optik ve radar görüntüleri ile aşırı gradyan artırma algoritması kullanılarak tarımsal ürün desen tespiti. Geomatik Dergisi, 9(1),54–68 https://doi.org/10.29128/geomatik.1332997
  • Matton, N., Canto, G.S., Waldner, F., Valero, S., Morin, D., Inglada, J., Arias, M., Bontemps, S., Koetz, B., & Defourny, P. (2015). An automated method for annual cropland mapping along the season for various globally-distributed agro systems using high spatial and temporal resolution time series. Remote Sensing, 7 (10), 13208-13232.
  • Qiong, H., Wen-bin, W., Qian, S., Miao, L., Di, C., Qiang-yi, Y., & Hua-jun, T. (2017). How do temporal and spectral features matter in crop classification in Heilongjiang Province, China Journal of Integrative Agriculture, 16(2), 324–336.https://doi:10.1016/S2095 3119(15)61321-1
  • Zhang, C., Zhang, H., Du, J., & Zhang, L. (2018). Automated paddy rice extent extraction with time stacks of sentinel data: a case study in Jianghan plain, Hubei, China. 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), 1-6 https://doi:10.1109/AgroGeoinformatics.2018.8476119
  • Altun, M., & Turker, M. (Year). Integration of Sentinel-1 and Landsat-8 images for crop detection: The case study of Manisa, Turkey. Advanced Remote Sensing, 2(1), 23-33
  • Waldner, F., Canto, G.S., Defourny, P. (2015). Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing,110:1-13. https://doi:10.1016/j.isprsjprs.2015.09.013
  • Csillik, O., Belgiu, M., Asner, G.P., & Kelly, M. (2016). Object-based time-constrained dynamic time warping classification of crops using sentinel-2. Remote Sensing, 11(10),1257. https://doi.org/10.3390/rs11101257
  • King, L.M., Adusei, B., Stehman, S., Potapov, P.V., Song, X., Krylov, A., Bella, C.M., Loveland, T.R., Johnson, D.M., & Hansen, M.C., (2017). A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sensing of Environment, 195, 13-29. https://doi.org/10.1016/j.rse.2017.03.047
  • Wardlow, B.D., & Egbert, S.L. (2008). Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment 112, 1096-1116 https://doi.org/10.1016/j.rse.2007.07.019
  • Wang, S., Azzari, G., & Lobell, D. (2019). Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sensing of Environment, 222,303-317. https://doi.org/10.1016/j.rse.2018.12.026
  • Kang, J., Zhang, H., Yang, H., & Zhang, L. (2018). Support vector machine classification of crop lands using sentinel-2 imagery. 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, pp. 1-6. https://doi: 10.1109/Agro-Geoinformatics.2018.8476101
  • Gomez, G., Shi, Z., Zhu, Y., Yang, X., & Hao, Y. (2020). Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Global Ecology and Conservation, 22, e00971. https://doi.org/10.1016/j.gecco.2020.e00971
  • Zhang, H., Kang, J., Xu, X., & Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi'an County, Heilongjiang province, China. Computer Electronic Agriculture, 176, 105618. https://doi.org/10.1016/j.compag.2020.105618
  • Li, Q., Tian, J., & Tian, Q. (2023). Deep learning application for crop classification via multi-temporal remote sensing images. Agriculture, 13(4),906.https://doi.org/10.3390/agriculture13040906
  • Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinformation, 72, 122-130 https://doi.org/10.1016/j.jag.2018.06.007
  • Arvor, D., Jonathan, M., Simoes, M., Dubreuil, V., & Durieux, L. (2011). Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. International Journal of Remote Sensing, 32(22), 7847-7871. https://doi.org/10.1080/01431161.2010.531783
  • Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509-523. https://doi.org/10.1016/j.rse.2017.10.005
  • Zheng, H., Du, P., Chen, J., Xia, J., Li, E., Xu, Z., Li, X., & Yokoya, N. (2017). Performance evaluation of downscaling sentinel-2 imagery for land use and land cover classification by spectral-spatial features. Remote Sensing, 9(12),1274. https://doi.org/10.3390/rs9121274
  • Müller, U. &, Wilm, U. (2017). Sen2Cor configure ration and user manual. Ref. S2-PDGS-MPC-L2A-SUM-V2.4, 1, 9-12
  • Müller, U., Wilm, U., Louis, J., Richter, R., Gascon, F., & Niezette, M. (2013). Sentinel-2 level 2a prototype processor: architecture, algorithms and first results. ESA Living Planet Symposium vol. 722, p. 98
  • Zhu, Z., & Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in Landsat images for tropical forest monitoring. Remote Sensing of Enviroment, 118,83-94. https://doi.org/10.1016/j.rse.2011.10.028
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69. https://doi.org/10.3390/rs13153031
  • Morsy, S., & Hadi, M. (2022).Investigation of phenological stages of wheat plant using vegetation index. Mersin Photogrammetry Journal, 2 (1) , 24-28.
  • Kaya, Y., & Polat, N. (2020). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt . International Journal of Engineering and Geosciences, 7 (3) , 272-282. https://doi.org/10.26833/ijeg.978961
  • Maxwell, A.E., Warner, T.A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9),2784-2817. https://doi.org/10.1080/01431161.2018.1433343
  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247-259 https://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
  • Huang, C., Davis, L,S., & Townshend, J.R.G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23: 725-749.http://dx.doi.org/10.1080/01431160110040323
  • Mathur, A., & Foody, G.M. (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. International Journal of Remote Sensing, 29, 2227-2240.https://doi.org/10.1080/01431160701395203
  • Duro, D. C., Franklin, S.E., & Dubé, M.G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, 259-272. http://dx.doi.org/10.1016/j.rse.2011.11.020.
  • 30.Ustuner, M., & Sanli, F.B. (2021). Crop classification from multi-temporal PolSAR data with regularized greedy forest. Advanced Remote Sensing, 1(1), 10-15
  • Belgiu M., Dragut, L. (2016). Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing 114, 24-31.https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Avcı, C., Budak, M., Yağmur, N., Balçık, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.98760533.
  • Tatsumi, M., Yamashiki, Y., Torres, M.A.C., & Taipe, C.L.R. (2015). Crop classification of upland fields using Random forest of time series Landsat 7 ETM+ data. Computers and Electronics in Agriculture, 115, 171-179. https://doi.org/10.1016/j.compag.2015.05.01
  • Zhong, L., Gong. P., Biging, G.S. (2014). Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, 1-13. https://doi.org/10.1016/j.rse.2013.08.023
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244
  • Terzi Türk, S., & Balçık, F. (2023). Rastgele orman algoritması ve Sentinel-2 MSI ile fındık ekili alanların belirlenmesi: Piraziz Örneği. Geomatik, 8(2), 91-98. https://doi.org/10.29128/geomatik.1127925
  • Zhang, H. K., & Roy, D.P. (2014). Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sensing of Environment, 197, 15-34. https://doi.org/10.1016/j.rse.2017.05.02
  • Chen, T.Q., & Guestrin, C. (2016). Xgboost: a scalable tree boosting system. proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, 13-17 August 2016, 785-794. https://doi.org/10.1145/2939672.2939785
  • Farid, D.M., Maruf, G.M., & Rahman, C .M. (2013). A new approach of boosting using decision tree classifier for classifying noisy data. 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 2013, pp. 1-4, https://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
Year 2025, Volume: 10 Issue: 2, 207 - 220
https://doi.org/10.26833/ijeg.1552141

Abstract

References

  • Şimşek, F.F. (2023). Optik ve radar görüntüleri ile aşırı gradyan artırma algoritması kullanılarak tarımsal ürün desen tespiti. Geomatik Dergisi, 9(1),54–68 https://doi.org/10.29128/geomatik.1332997
  • Matton, N., Canto, G.S., Waldner, F., Valero, S., Morin, D., Inglada, J., Arias, M., Bontemps, S., Koetz, B., & Defourny, P. (2015). An automated method for annual cropland mapping along the season for various globally-distributed agro systems using high spatial and temporal resolution time series. Remote Sensing, 7 (10), 13208-13232.
  • Qiong, H., Wen-bin, W., Qian, S., Miao, L., Di, C., Qiang-yi, Y., & Hua-jun, T. (2017). How do temporal and spectral features matter in crop classification in Heilongjiang Province, China Journal of Integrative Agriculture, 16(2), 324–336.https://doi:10.1016/S2095 3119(15)61321-1
  • Zhang, C., Zhang, H., Du, J., & Zhang, L. (2018). Automated paddy rice extent extraction with time stacks of sentinel data: a case study in Jianghan plain, Hubei, China. 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), 1-6 https://doi:10.1109/AgroGeoinformatics.2018.8476119
  • Altun, M., & Turker, M. (Year). Integration of Sentinel-1 and Landsat-8 images for crop detection: The case study of Manisa, Turkey. Advanced Remote Sensing, 2(1), 23-33
  • Waldner, F., Canto, G.S., Defourny, P. (2015). Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing,110:1-13. https://doi:10.1016/j.isprsjprs.2015.09.013
  • Csillik, O., Belgiu, M., Asner, G.P., & Kelly, M. (2016). Object-based time-constrained dynamic time warping classification of crops using sentinel-2. Remote Sensing, 11(10),1257. https://doi.org/10.3390/rs11101257
  • King, L.M., Adusei, B., Stehman, S., Potapov, P.V., Song, X., Krylov, A., Bella, C.M., Loveland, T.R., Johnson, D.M., & Hansen, M.C., (2017). A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sensing of Environment, 195, 13-29. https://doi.org/10.1016/j.rse.2017.03.047
  • Wardlow, B.D., & Egbert, S.L. (2008). Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment 112, 1096-1116 https://doi.org/10.1016/j.rse.2007.07.019
  • Wang, S., Azzari, G., & Lobell, D. (2019). Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sensing of Environment, 222,303-317. https://doi.org/10.1016/j.rse.2018.12.026
  • Kang, J., Zhang, H., Yang, H., & Zhang, L. (2018). Support vector machine classification of crop lands using sentinel-2 imagery. 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, pp. 1-6. https://doi: 10.1109/Agro-Geoinformatics.2018.8476101
  • Gomez, G., Shi, Z., Zhu, Y., Yang, X., & Hao, Y. (2020). Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Global Ecology and Conservation, 22, e00971. https://doi.org/10.1016/j.gecco.2020.e00971
  • Zhang, H., Kang, J., Xu, X., & Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi'an County, Heilongjiang province, China. Computer Electronic Agriculture, 176, 105618. https://doi.org/10.1016/j.compag.2020.105618
  • Li, Q., Tian, J., & Tian, Q. (2023). Deep learning application for crop classification via multi-temporal remote sensing images. Agriculture, 13(4),906.https://doi.org/10.3390/agriculture13040906
  • Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinformation, 72, 122-130 https://doi.org/10.1016/j.jag.2018.06.007
  • Arvor, D., Jonathan, M., Simoes, M., Dubreuil, V., & Durieux, L. (2011). Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. International Journal of Remote Sensing, 32(22), 7847-7871. https://doi.org/10.1080/01431161.2010.531783
  • Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509-523. https://doi.org/10.1016/j.rse.2017.10.005
  • Zheng, H., Du, P., Chen, J., Xia, J., Li, E., Xu, Z., Li, X., & Yokoya, N. (2017). Performance evaluation of downscaling sentinel-2 imagery for land use and land cover classification by spectral-spatial features. Remote Sensing, 9(12),1274. https://doi.org/10.3390/rs9121274
  • Müller, U. &, Wilm, U. (2017). Sen2Cor configure ration and user manual. Ref. S2-PDGS-MPC-L2A-SUM-V2.4, 1, 9-12
  • Müller, U., Wilm, U., Louis, J., Richter, R., Gascon, F., & Niezette, M. (2013). Sentinel-2 level 2a prototype processor: architecture, algorithms and first results. ESA Living Planet Symposium vol. 722, p. 98
  • Zhu, Z., & Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in Landsat images for tropical forest monitoring. Remote Sensing of Enviroment, 118,83-94. https://doi.org/10.1016/j.rse.2011.10.028
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69. https://doi.org/10.3390/rs13153031
  • Morsy, S., & Hadi, M. (2022).Investigation of phenological stages of wheat plant using vegetation index. Mersin Photogrammetry Journal, 2 (1) , 24-28.
  • Kaya, Y., & Polat, N. (2020). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt . International Journal of Engineering and Geosciences, 7 (3) , 272-282. https://doi.org/10.26833/ijeg.978961
  • Maxwell, A.E., Warner, T.A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9),2784-2817. https://doi.org/10.1080/01431161.2018.1433343
  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247-259 https://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
  • Huang, C., Davis, L,S., & Townshend, J.R.G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23: 725-749.http://dx.doi.org/10.1080/01431160110040323
  • Mathur, A., & Foody, G.M. (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. International Journal of Remote Sensing, 29, 2227-2240.https://doi.org/10.1080/01431160701395203
  • Duro, D. C., Franklin, S.E., & Dubé, M.G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, 259-272. http://dx.doi.org/10.1016/j.rse.2011.11.020.
  • 30.Ustuner, M., & Sanli, F.B. (2021). Crop classification from multi-temporal PolSAR data with regularized greedy forest. Advanced Remote Sensing, 1(1), 10-15
  • Belgiu M., Dragut, L. (2016). Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing 114, 24-31.https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Avcı, C., Budak, M., Yağmur, N., Balçık, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.98760533.
  • Tatsumi, M., Yamashiki, Y., Torres, M.A.C., & Taipe, C.L.R. (2015). Crop classification of upland fields using Random forest of time series Landsat 7 ETM+ data. Computers and Electronics in Agriculture, 115, 171-179. https://doi.org/10.1016/j.compag.2015.05.01
  • Zhong, L., Gong. P., Biging, G.S. (2014). Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, 1-13. https://doi.org/10.1016/j.rse.2013.08.023
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244
  • Terzi Türk, S., & Balçık, F. (2023). Rastgele orman algoritması ve Sentinel-2 MSI ile fındık ekili alanların belirlenmesi: Piraziz Örneği. Geomatik, 8(2), 91-98. https://doi.org/10.29128/geomatik.1127925
  • Zhang, H. K., & Roy, D.P. (2014). Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sensing of Environment, 197, 15-34. https://doi.org/10.1016/j.rse.2017.05.02
  • Chen, T.Q., & Guestrin, C. (2016). Xgboost: a scalable tree boosting system. proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, 13-17 August 2016, 785-794. https://doi.org/10.1145/2939672.2939785
  • Farid, D.M., Maruf, G.M., & Rahman, C .M. (2013). A new approach of boosting using decision tree classifier for classifying noisy data. 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 2013, pp. 1-4, https://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
There are 39 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Fatih Fehmi Şimşek 0000-0003-4016-4408

Early Pub Date January 24, 2025
Publication Date
Submission Date September 18, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Şimşek, F. F. (2025). Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels. International Journal of Engineering and Geosciences, 10(2), 207-220. https://doi.org/10.26833/ijeg.1552141
AMA Şimşek FF. Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels. IJEG. January 2025;10(2):207-220. doi:10.26833/ijeg.1552141
Chicago Şimşek, Fatih Fehmi. “Comparison of Agricultural Crop Type Classifications With Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels”. International Journal of Engineering and Geosciences 10, no. 2 (January 2025): 207-20. https://doi.org/10.26833/ijeg.1552141.
EndNote Şimşek FF (January 1, 2025) Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels. International Journal of Engineering and Geosciences 10 2 207–220.
IEEE F. F. Şimşek, “Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels”, IJEG, vol. 10, no. 2, pp. 207–220, 2025, doi: 10.26833/ijeg.1552141.
ISNAD Şimşek, Fatih Fehmi. “Comparison of Agricultural Crop Type Classifications With Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels”. International Journal of Engineering and Geosciences 10/2 (January 2025), 207-220. https://doi.org/10.26833/ijeg.1552141.
JAMA Şimşek FF. Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels. IJEG. 2025;10:207–220.
MLA Şimşek, Fatih Fehmi. “Comparison of Agricultural Crop Type Classifications With Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels”. International Journal of Engineering and Geosciences, vol. 10, no. 2, 2025, pp. 207-20, doi:10.26833/ijeg.1552141.
Vancouver Şimşek FF. Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels. IJEG. 2025;10(2):207-20.