Research Article
BibTex RIS Cite

Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques

Year 2026, Volume: 11 Issue: 1, 226 - 238
https://doi.org/10.26833/ijeg.1686266

Abstract

Accurate spatial positioning is essential for many geospatial applications, particularly those requiring high precision. This study evaluates the positional accuracy of maps derived from Unmanned Aerial Vehicle (UAV) data by comparing them with Ground Control Points (GCPs) established using a high-precision electronic total station. Four positioning methods were assessed: Real-Time Kinematic (RTK), TUSAGA-Active (Turkish National Permanent GNSS Network – Active), UAV Post-Processed Kinematic (UAV_PPK), and UAV Network RTK. Accuracy was evaluated regarding horizontal and vertical deviations using standard deviation (SD) and root mean square error (RMSE) metrics. Among the tested methods, RTK demonstrated the highest positional accuracy under the tested conditions, whereas UAV_PPK exhibited the lowest, particularly in vertical positioning. RTK consistently yielded horizontal and vertical RMSE values below 25 mm, while UAV_PPK produced errors exceeding 60 mm in horizontal and reaching up to 115 mm in vertical components. These findings indicate that although UAV-based techniques provide operational efficiency, integrating accurately surveyed GCPs remains critical for achieving reliable spatial accuracy. The study emphasizes the importance of selecting appropriate positioning methods based on project-specific accuracy requirements and supports further research to optimize UAV-based mapping workflows.

Ethical Statement

No ethical Statement

Supporting Institution

TÜBİTAK BİDEB

Project Number

1919B012316133

Thanks

This research was supported by the TÜBİTAK 2209-A University Students Research Projects Support Program under the project titled “Accuracy Analysis of Maps Generated Using Unmanned Aerial Vehicles (UAVs) and Different Surveying Techniques (1919B012316133).” We express our gratitude to TÜBİTAK BİDEB for their support.

References

  • Clevers, J. G. P. W. (2016). [Review of the book Fundamentals of satellite remote sensing: An environmental approach (2nd ed.), by E. Chuvieco]. International Journal of Applied Earth Observation and Geoinformation, 51, 108–109. https://doi.org/10.1016/j.jag.2016.05.001
  • Serwa, A., & El-Semary, H. H. (2016). Integration of soft computational simulator and strapdown inertial navigation system for aerial surveying project planning. Spatial Information Research, 24(3), 279–290. https://doi.org/10.1007/s41324-016-0027-9
  • Schloderer, G., Bingham, M., Awange, J. L., & Fleming, K. M. (2011). Application of GNSS-RTK derived topographical maps for rapid environmental monitoring: A case study of Jack Finnery Lake (Perth, Australia). Environmental Monitoring and Assessment, 180(1), 147–161. https://doi.org/10.1007/s10661-010-1778-8
  • Manyoky, M., Theiler, P., Steudler, D., & Eisenbeiss, H. (2011, September). Unmanned aerial vehicle in cadastral applications. Paper presented at the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland. https://doi.org/10.3929/ethz-b-000041977
  • Bangen, S. G., Wheaton, J. M., Bouwes, N., Bouwes, B., & Jordan, C. (2014). A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology, 206, 343–361. https://doi.org/10.1016/j.geomorph.2013.10.010
  • Deliry, S. I., & Avdan, U. (2024). Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. International Journal of Engineering and Geosciences, 9(2), 165–190. https://doi.org/10.26833/ijeg.1366146
  • Özdemir, E. G. (2022). Bağıl ve mutlak (PPP) konum çözüm yaklaşımı sunan Web-Tabanlı çevrimiçi veri değerlendirme servislerinin farklı gözlem periyotlarındaki performanslarının araştırılması. Geomatik, 7(1), 41–51. https://doi.org/10.29128/geomatik.809826
  • Wanninger, L. (1998). Real-time differential GPS error modelling in regional reference station networks. In F. K. Brunner (Ed.), Advances in positioning and reference frames (pp. 86–92). Springer.
  • Rizos, C., & Han, S. (2003). Reference station network based RTK systems-concepts and progress. Wuhan University Journal of Natural Sciences, 8(2), 566–574. https://doi.org/10.1007/BF02899820
  • Akpınar, B., Aykut, N. O., Dindar, A. A., Gürkan, K., & Gülal, E. (2017). Ağ RTK GNSS Yönteminin Yapı Sağlığı İzleme Çalışmalarında Kullanımı. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(3),1030–1040. https://doi.org/10.5578/fmbd.66278
  • Erdoğan, A., & Mutluoglu, Ö. (2020). İnsansız Hava Aracı (İHA) ile Üretilen Şeritvari Haritalardan Kübaj Hesabı. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 61–66.
  • Unger, J., Reich, M., & Heipke, C. (2014). UAV-based photogrammetry: Monitoring of a building zone. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–5, 601–606. https://doi.org/10.5194/isprsarchives-XL-5-601-2014
  • Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.
  • Azmi, S. M., Ahmad, B., & Ahmad, A. (2014). Accuracy assessment of topographic mapping using UAV image integrated with satellite images. IOP Conference Series: Earth and Environmental Science, 18(1), 012015. https://doi.org/10.1088/1755-1315/18/1/012015
  • Villi, O., & Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100. https://doi.org/10.15317/Scitech.2017.109
  • Nwilag, B. D., Eyoh, A. E., & Ndehedehe, C. E. (2023). Digital topographic mapping and modelling using low altitude unmanned aerial vehicle. Modeling Earth Systems and Environment, 9(2), 1463–1476. https://doi.org/10.1007/s40808-022-01677-z
  • Padró, J.-C., Muñoz, F.-J., Planas, J., & Pons, X. (2019). Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International Journal of Applied Earth Observation and Geoinformation, 75, 130–140. https://doi.org/10.1016/j.jag.2018.10.018
  • Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A., & Merganič, J. (2019). UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sensing, 11(6). https://doi.org/10.3390/rs11060721
  • Kökhan, S., & Engin, M. A. (2024). İnsansız Hava Araçları ile Orman Yangınlarının Tespitinde Görüntü İşleme ve Yapay Zekâ Tabanlı Otomatik Bir Model. Duzce University Journal of Science and Technology, 12(2), 762–775. https://doi.org/10.29130/dubited.1103375
  • Kun, M., & Özcan, B. (2019). Maden ocaklarında insansız hava aracı kullanımı: Örnek bir saha çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 554–564. https://doi.org/10.25092/baunfbed.624484
  • Mırdan, O., & Yakar, M. (2017). Tarihi Eserlerin İnsansız Hava Aracı ile Modellenmesinde Karşılaşılan Sorunlar. Geomatik, 2(3), 118-125. https://doi.org/10.29128/geomatik.306914
  • Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010, June). Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616).
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.
  • Alyilmaz, C., Alyilmaz, S. & Yakar, M. (2010). Measurement of petroglyhps (rock of arts) of Qobustan with close range photogrammetry. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38 (Part 5), 29-32.
  • Erdal, K., & Makineci, H. B. (2023). Adaptation analysis of produced 3D models from UAV-SLAM and UAV-TLS data combinations. Mersin Photogrammetry Journal, 5(1), 18-23. https://doi.org/10.53093/mephoj.1269630
  • Varol, F. (2025). Creation of surface model using unmanned aerial vehicle (UAV) photogrammetry in cultural heritage areas: The example of Kilistra Ancient City. International Journal of Engineering and Geosciences, 10(2), 137-150. https://doi.org/10.26833/ijeg.1487818
  • Forlani, G., Dall’Asta, E., Diotri, F., Cella, U. M. di, Roncella, R., & Santise, M. (2018). Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing, 10(2). https://doi.org/10.3390/rs10020311
  • Hastaoğlu, K. Ö., Gül, Y., Poyraz, F., & Kara, B. C. (2019). Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 83, 101916. https://doi.org/10.1016/j.jag.2019.101916
  • Altuntabak, H., & Ata, E. (2022). Investigation of accuracy of detailed verified by unmanned aerial vehicles with RTK system; The example of Ortakent-Bodrum Area. Advanced UAV, 2(1), 1–10. https://publish.mersin.edu.tr/index.php/uav/article/view/244
  • Shah, M. S. M. Z., Ariff, M. F. M., & Razali, A. F. (2022). Accuracy assessment of airborne mapping based on variation of number and distribution of ground control points. In 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC) (pp. 88–93). IEEE. https://doi.org/10.1109/ICSPC55597.2022.10001799
  • Polat, H., & Ataş, İ. (2024). Accuracy Analysis of Photogrammetric Digital Topographic Map Production: The Case Study of Kuruca Village in Bingöl Center. International Journal of Nature and Life Sciences, 8(2), 241-251. https://doi.org/10.47947/ijnls.1608608
  • Bartın Governorship. (2025). Ulus. http://www.bartin.gov.tr/ulus
  • Turkish State Meteorological Service. (2023). Meteorological data. http://www.mgm.gov.tr
  • Topcon. (2021). Topcon ES Series Total Stations – Product Overview. Topcon Positioning Systems. Retrieved from: http://topconsokkia.ind.in/www/uploads/product_brochur/es-series.pdf
  • SinoGNSS. (2022). N3 GNSS Receiver Datasheet. CHC Navigation. Retrieved from: https://www.comnavtech.com/sp/uploads/soft/20240530/de84c56eec4fd67bcc89d25c7b71d8f5.pdf.
  • DJI. (2022). Mavic 3 Enterprise Series Specifications. DJI Official Website. Retrieved from: https://enterprise.dji.com/mavic-3-enterprise/specs
  • Eker, R., Alkan, E., & Aydın, A. (2021). A Comparative Analysis of UAV-RTK and UAV-PPK Methods in Mapping Different Surface Types. European Journal of Forest Engineering, 7(1), 12–25. https://doi.org/10.33904/ejfe.938067
  • İnal, C., Gündüz, A. M., & Bülbül, S. (2014). Klasik RTK ve Ağ-RTK Yöntemlerinin Karşılaştırılması. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 2(2), 21-30.
  • Türk, Y., Balaban, B., Alkan, E., Çınar, T., & Aydın, A. (2022). Açık maden sahalarında kazı sonrası zemin değişiminin izlenmesinde İHA-tabanlı RTK/PPK yönteminin kullanımı: Düzce-Tatlıdere taş ocağı örneği. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 76–85. https://doi.org/10.17568/ogmoad.1093694
  • Silwal, A., Tamang, S., & Adhikari, R. (2022). Use of unmanned aerial vehicle (UAV) for mapping, and accuracy assessment of the orthophoto with and without using GCPs: A case study in Nepal. Mersin Photogrammetry Journal, 4(2), 45–52. https://doi.org/10.53093/mephoj.1176847
  • Güngör, R., Uzar, M., Atak, B., Yılmaz, O. S., et al. (2022). Orthophoto production and accuracy analysis with UAV photogrammetry. Mersin Photogrammetry Journal, 4(1), 1-6. https://doi.org/10.53093/mephoj.1122615
  • Ismael, R. Q., & Henari, Q. Z. (2019). Accuracy assessment of UAV photogrammetry for large scale topographic mapping. In 2019 International Engineering Conference (IEC) (pp. 1–5). https://doi.org/10.1109/IEC47844.2019.8950607
  • Sefercik, U. G., Kavzoğlu, T., Çölkesen, İ., Nazar, M., et al. (2023). 3D positioning accuracy and land cover classification performance of multispectral RTK UAVs. International Journal of Engineering and Geosciences, 8(2), 119-128. https://doi.org/10.26833/ijeg.1074791
  • Pathak, S., Acharya, S., Bk, S., Karn, G., et al. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1-8. https://doi.org/10.53093/mephoj.1350426
  • Türk, T., & Öcalan, T. (2020). PPK GNSS Sistemine Sahip İnsansız Hava Araçları ile Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. Türkiye Fotogrametri Dergisi, 2(1), 22–28.
There are 46 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Eren Gürsoy Özdemir 0000-0002-1829-9624

Emirhan Deniz 0009-0000-4807-7646

Melisa Hezer 0009-0000-6219-1744

Project Number 1919B012316133
Early Pub Date August 25, 2025
Publication Date September 28, 2025
Submission Date April 29, 2025
Acceptance Date July 22, 2025
Published in Issue Year 2026 Volume: 11 Issue: 1

Cite

APA Özdemir, E. G., Deniz, E., & Hezer, M. (n.d.). Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques. International Journal of Engineering and Geosciences, 11(1), 226-238. https://doi.org/10.26833/ijeg.1686266
AMA Özdemir EG, Deniz E, Hezer M. Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques. IJEG. 11(1):226-238. doi:10.26833/ijeg.1686266
Chicago Özdemir, Eren Gürsoy, Emirhan Deniz, and Melisa Hezer. “Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques”. International Journal of Engineering and Geosciences 11, no. 1 n.d.: 226-38. https://doi.org/10.26833/ijeg.1686266.
EndNote Özdemir EG, Deniz E, Hezer M Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques. International Journal of Engineering and Geosciences 11 1 226–238.
IEEE E. G. Özdemir, E. Deniz, and M. Hezer, “Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques”, IJEG, vol. 11, no. 1, pp. 226–238, doi: 10.26833/ijeg.1686266.
ISNAD Özdemir, Eren Gürsoy et al. “Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques”. International Journal of Engineering and Geosciences 11/1 (n.d.), 226-238. https://doi.org/10.26833/ijeg.1686266.
JAMA Özdemir EG, Deniz E, Hezer M. Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques. IJEG.;11:226–238.
MLA Özdemir, Eren Gürsoy et al. “Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques”. International Journal of Engineering and Geosciences, vol. 11, no. 1, pp. 226-38, doi:10.26833/ijeg.1686266.
Vancouver Özdemir EG, Deniz E, Hezer M. Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques. IJEG. 11(1):226-38.