Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance Analysis of a Drone Development Kit-derived Digital Elevation Model

Yıl 2023, Cilt: 10 Sayı: 4, 77 - 89, 26.12.2023
https://doi.org/10.30897/ijegeo.1344526

Öz

Surface modeling constitutes is a crucial aspect in numerous engineering inquiries and earth observation endeavors. In contemporary times, the acquisition of geospatial data essential for the digital representation of local regions is increasingly facilitated through drone-based methodologies, supplanting conventional terrestrial data gathering techniques. The market presently hosts a plethora of cost-effective, "ready-to-fly" unmanned aerial vehicles (UAVs), offering users the capability to generate photogrammetric outputs, including high geometric precision Digital Elevation Models (DEMs). Moreover, modularly structured drone development kits, designed for multifarious applications, are readily accessible for purchase. These drone kits offer an economically advantageous platform that users can customize to suit their specific needs. Nevertheless, the geometric precision of DEMs created using these kits hinges upon the capabilities of the imaging and navigation systems, in addition to the stabilization of the platform during autonomous flight. In this study, using a drone development kit and a commercial drone, simultaneous image acquisition was performed for the same study area and two different DEMs were produced. The efficacy of the DEM generated using the drone development kit was assessed through a comparative analysis with the DEM obtained from a commercial drone. In addition, geometric accuracy assessment was conducted for both DEMs using ground control points. The findings reveal the usability of drone development kits in precision DEM production, as well as their limitations.

Destekleyen Kurum

Hacettepe Üniversitesi Bilimsel Araştırma Proje Koordinasyon Birimi

Proje Numarası

FAY-2022-19793

Teşekkür

This study was supported by Hacettepe University Scientific Research Project Coordination Unit within the scope of the project numbered FAY-2022-19793. We thank Hacettepe University for providing this support. We also thank Abdurrahman Gürel for his contributions in making the drone development kit ready for autonomous flight.

Kaynakça

  • Akturk, E., Altunel, A. O. (2019). Accuracy Assessment of a Low-Cost UAV Derived Digital Elevation Model (DEM) in a Highly Broken and Vegetated Terrain. Measurement, 136, 382-386. https://doi.org/https://doi.org/10.1016/j.measurement.2018.12.101
  • Bailey, G., Li, Y., McKinney, N., Yoder, D., Wright, W., Washington-Allen, R. (2022). Las2DoD: Change Detection Based on Digital Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty. Remote Sensing, 14(7), 1537. https://www.mdpi.com/2072-4292/14/7/1537
  • Bayırhan, I., Gazioğlu, C. (2020). Use of Unmanned Aerial Vehicles (UAV) and Marine Environment Simulator in Oil Pollution Investigations, Baltic J. Modern Computing, 8(2), 327-336, doi.10.22364/bjmc.2020.8.2.08
  • Bi, R., Gan, S., Yuan, X., Li, R., Gao, S., Luo, W., Hu, L. (2021). Studies on Three-Dimensional (3D) Accuracy Optimization and Repeatability of UAV in Complex Pit-Rim Landforms As Assisted by Oblique Imaging and RTK Positioning. Sensors, 21(23), 8109.
  • Bruno, N., Forlani, G. (2023). Experimental Tests and Simulations on Correction Models for the Rolling Shutter Effect in UAV Photogrammetry. Remote Sensing, 15(9), 2391.
  • Carpenter, A., Lawrence, J. A., Ghail, R., Mason, P. J. (2023). The Development of Copper Clad Laminate Horn Antennas for Drone Interferometric Synthetic Aperture Radar. Drones, 7(3), 215.
  • Dahlin Rodin, C., de Alcantara Andrade, F. A., Hovenburg, A. R., Johansen, T. A. (2019). A Survey of Practical Design Considerations of Optical Imaging Stabilization Systems for Small Unmanned Aerial Systems. Sensors, 19(21), 4800.
  • Deliry, S. I., Avdan, U. (2021). Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review. Journal of the Indian Society of Remote Sensing, 49(8), 1997-2017. https://doi.org/10.1007/s12524-021-01366-x
  • DJI. (2023). DJI Enterprise Phantom 4 RTK Specifications. Retrieved 26 July 2023 from https://enterprise.dji.com/phantom-4-rtk/specs
  • Elkhrachy, I. (2021). Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alexandria Engineering Journal, 60(6), 5579-5590. https://doi.org/https://doi.org/10.1016/j.aej.2021.04.011
  • Ergun, B., Sahin, C., Bilucan, F. (2023). Level of Detail (LoD) Geometric Analysis of Relief Mapping Employing 3D Modeling via UAV Images in Cultural Heritage Studies. Heritage Science, 11(1), 194. https://doi.org/10.1186/s40494-023-01041-z
  • Fanta-Jende, P., Steininger, D., Bruckmüller, F., Sulzbachner, C. (2020). A Versatile UAV Near Real-Time Mapping Solution for Disaster Reponses – Concept, Ideas and Implementation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 429-435. https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-429-2020
  • Gazioğlu, C., Varol, ÖE., Şeker, DZ., Çağlar, N. (2017). Determination of the Environmental Impacts of Marine Accidents Using UAV and RS Technologies, 19th MESAEP Symposium on Environmental and Health Inequity, Roma, ITALYA, 3-6 Dec 2017.
  • Gafurov, A. (2021). The Methodological Aspects of Constructing a High-Resolution DEM of Large Territories Using Low-Cost UAVs on the Example of the Sarycum Aeolian Complex, Dagestan, Russia. Drones, 5(1), 7.
  • Gašparović, M., Jurjević, L. (2017). Gimbal Influence on the Stability of Exterior Orientation Parameters of UAV Acquired Images. Sensors, 17(2), 401.
  • Giordan, D., Adams, M. S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., De Berardinis, P., Dominici, D., Godone, D., Hobbs, P., Lechner, V., Niedzielski, T., Piras, M., Rotilio, M., Salvini, R., Segor, V., Sotier, B., Troilo, F. (2020). The Use of Unmanned Aerial Vehicles (UAVs) for Engineering Geology Applications. Bulletin of Engineering Geology and the Environment, 79(7), 3437-3481. https://doi.org/10.1007/s10064-020-01766-2
  • Granados-Bolaños, S., Quesada-Román, A., Alvarado, G. E. (2021). Low-Cost UAV Applications in Dynamic Tropical Volcanic Landforms. Journal of Volcanology and Geothermal Research, 410, 107143. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2020.107143
  • Guenzi, D., Allasia, P., Baldo, M., Giordan, D. (2019). Open Source, Low-Cost and Modular Fixed-Wing UAV with BVLOS Flight Capabilities for Geohazards Monitoring and Surveying. 2019 IEEE 5th International Workshop on Metrology for AeroSpace Turin, Italy.
  • Guth, P. L., Van Niekerk, A., Grohmann, C. H., Muller, J.-P., Hawker, L., Florinsky, I. V., Gesch, D., Reuter, H. I., Herrera-Cruz, V., Riazanoff, S., López-Vázquez, C., Carabajal, C. C., Albinet, C., Strobl, P. (2021). Digital Elevation Models: Terminology and Definitions. Remote Sensing, 13(18), 3581.
  • Gündüz, S. (2023). UAV Image-Based Plan Drawing Method in Submerged Terrestrial Archaeological Settlements: The case of Kibotos. International Journal of Environment and Geoinformatics, 10(1), 139-145. https://doi.org/10.30897/ijegeo.1231224
  • Habib, A., Akdim, N., El Ghandour, F.-e., Labbassi, K., Khoshelham, K., Menenti, M. (2017). Extraction and accuracy assessment of high-resolution DEM and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala (Morocco). Earth Science Informatics, 10(2), 197-217. https://doi.org/10. 1007/s12145-017-0287-5
  • Harvey, P., Körtner, G. (2016). ExifTool. Retrieved 12.08.2023 from https://exiftool.org/
  • Hill, A. C. (2019). Economical Drone Mapping for Archaeology: Comparisons of Efficiency and Accuracy. Journal of Archaeological Science: Reports, 24, 80-91. https://doi.org/https://doi.org/ 10.1016/j.jasrep.2018.12.011
  • Hill, A. C., Rowan, Y. M. (2022). The Black Desert Drone Survey: New Perspectives on an Ancient Landscape. Remote Sensing, 14(3), 702.
  • Hong-Xia, C., De-Zhu, G., Zhuo, L. (2013). Research on Image Motion Blur for Low Altitude Remote Sensing. Information Technology Journal, 12(23), 7096.
  • Incekara, A. H., Seker, D. Z. (2021). Rolling Shutter Effect on The Accuracy of Photogrammetric Product Produced by Low-Cost UAV. International Journal of Environment and Geoinformatics, 8(4), 549-553.
  • Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., Lin, Y. (2010). A Low-Cost Multi-Sensoral Mobile Mapping System and Its Feasibility for Tree Measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 514-522. https://doi.org/10.1016/j.isprsjprs.2010.08.002
  • Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. d. J., Enciso, J. (2021). Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS International Journal of Geo-Information, 10(5), 285. https://www.mdpi.com/2220-9964/10/5/285
  • Kalacska, M., Lucanus, O., Arroyo-Mora, J. P., Laliberté, É., Elmer, K., Leblanc, G., Groves, A. (2020). Accuracy of 3D Landscape Reconstruction without Ground Control Points Using Different UAS Platforms. Drones, 4(2), 13.
  • Kim, N., Bae, J., Kim, C., Park, S., Sohn, H.-G. (2020). Object Distance Estimation Using a Single Image Taken from a Moving Rolling Shutter Camera. Sensors, 20(14), 3860.
  • Kovanič, Ľ., Topitzer, B., Peťovský, P., Blišťan, P., Gergeľová, M. B., Blišťanová, M. (2023). Review of Photogrammetric and Lidar Applications of UAV. Applied Sciences, 13(11), 6732.
  • Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ., Palková, J., Zelizňaková, V. (2016). Use of Low-Cost UAV Photogrammetry to Analyze tthe Accuracy of A Digital Elevation Model in a Case Study. Measurement, 91, 276-287. https://doi.org/10.1016/j.measurement.2016.05.028
  • Latif, M. A. (2022). Improving Stability of Aerial Videos Acquired Through Vision Sensors Onboard UAVs for Applications in Precision Agriculture. Signal, Image and Video Processing, 16(5), 1263-1270. https://doi.org/10.1007/s11760-021-02077-z
  • Lee, H., Kim, D. j. (2022). Generation of Dense and High-Precision Digital Elevation Model Using Low-Cost Unmanned Aerial Vehicle and Space-Borne TanDEM-X to Measure Exposed Area Change Due to Tidal Invasion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 6899-6911. https://doi.org/10.1109/JSTARS.2022. 3195744
  • Lewicka, O., Specht, M., Specht, C. (2022). Assessment of the Steering Precision of a UAV along the Flight Profiles Using a GNSS RTK Receiver. Remote Sensing, 14(23), 6127.
  • Mah, S. B., Cryderman, C. S. (2015). Implementation of An Unmanned Aerial Vehicle System for Large Scale Mapping. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W4, 47-54. https://doi.org/ 10.5194/isprsarchives-XL-1-W4-47-2015
  • Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., Gabbianelli, G. (2013). Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sensing, 5(12), 6880-6898.
  • Michez, A., Philippe, L., David, K., Sébastien, C., Christian, D., Bindelle, J. (2020). Can Low-Cost Unmanned Aerial Systems Describe the Forage Quality Heterogeneity? Insight from a Timothy Pasture Case Study in Southern Belgium. Remote Sensing, 12(10), 1650.
  • Moudrý, V., Urban, R., Štroner, M., Komárek, J., Brouček, J., Prošek, J. (2019). Comparison of a Commercial and Home-Assembled Fixed-Wing UAV for Terrain Mapping of a Post-Mining Site Under Leaf-Off Conditions. International Journal of Remote Sensing, 40(2), 555-572. https://doi.org/10.1080/ 01431161.2018.1516311
  • Peng, Y., Tang, Z., Zhao, G., Cao, G., Wu, C. (2022). Motion Blur Removal for UAV-Based Wind Turbine Blade Images Using Synthetic Datasets. Remote Sensing, 14(1), 87.
  • Pichaikuppan, V. R. A., Narayanan, R. A., Rangarajan, A. (2014). Change Detection in the Presence of Motion Blur and Rolling Shutter Effect. Computer Vision – ECCV 2014, Cham.
  • Pricope, N. G., Mapes, K. L., Woodward, K. D., Olsen, S. F., Baxley, J. B. (2019). Multi-Sensor Assessment of the Effects of Varying Processing Parameters on UAS Product Accuracy and Quality. Drones, 3(3), 63.
  • Rhee, S., Kim, T. (2016). Dense 3D Point Cloud Generation from UAV Images from Image Matching and Global Optimazation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 1005-1009. https://doi.org/10.5194/isprs-archives-XLI-B1-1005-2016
  • Roth, L., Hund, A., Aasen, H. (2018). PhenoFly Planning Tool: Flight Planning for High-Resolution Optical Remote Sensing with Unmanned Areal Systems. Plant Methods, 14(1), 116. https://doi.org/10.1186/s13007-018-0376-6
  • Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., Aksamitauskas, V. Č. (2015). The Surface Modelling Based on UAV Photogrammetry and Qualitative Estimation. Measurement, 73, 619-627. https://doi.org/10.1016/j.measurement.2015.04.018
  • Santise, M., Fornari, M., Forlani, G., Roncella, R. (2014). Evaluation of DEM Generation Accuracy from UAS Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5, 529-536. https://doi.org/10. 5194/isprsarchives-XL-5-529-2014
  • Sertić, H., Paar, R., Tomić, H., Ravlić, F. (2022). Influence of Flight Height and Image Sensor on the Quality of the UAS Orthophotos for Cadastral Survey Purposes. Land, 11(8), 1250.
  • Shawky, M., Moussa, A., Hassan, Q. K., El-Sheimy, N. (2019). Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models. Remote Sensing, 11(3), 235.
  • Sieberth, T., Wackrow, R., Chandler, J. H. (2014). Influence of blur on feature matching and a geometric approach for photogrammetric deblurring. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3, 321-326. https://doi.org/10.5194/isprsarchives-XL-3-321-2014
  • Sieberth, T., Wackrow, R., Chandler, J. H. (2015). UAV Image Blur and Its Influence and Ways to Correct It. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W4, 33-39. https://doi.org/10.5194/ isprsarchives-XL-1-W4-33-2015
  • Teague, S., Chahl, J. (2023). Strapdown Celestial Attitude Estimation from Long Exposure Images for UAV Navigation. Drones, 7(1), 52.
  • Uysal, M., Toprak, A. S., Polat, N. (2015). DEM Generation with UAV Photogrammetry and Accuracy Analysis in Sahitler Hill. Measurement, 73, 539-543. https://doi.org/https://doi.org/10.1016/j.measurement.2015.06.010
  • Ventura, D., Bruno, M., Jona Lasinio, G., Belluscio, A., Ardizzone, G. (2016). A Low-Cost Drone Based Application for Identifying and Mapping of Coastal Fish Nursery Grounds. Estuarine, Coastal and Shelf Science, 171, 85-98. https://doi.org/10.1016/ j.ecss.2016.01.030
  • Villanueva, J. K. S., Blanco, A. C. (2019). Optimization of Ground Control Point (GCP) Configuration for Unmanned Aerial Vehicle (UAV) Survey Using Structure from Motion (SfM). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W12, 167-174. https://doi.org/10.5194/isprs-archives-XLII-4-W12-167-2019
  • Wang, D., Shu, H. (2022). Accuracy Analysis of Three-Dimensional Modeling of a Multi-Level UAV without Control Points. Buildings, 12(5), 592.
  • Wang, Y. Z., Ye, Q. H. (2021). ArcPycor: An Open-Source Automated GIS Tool to Co-Register Elevation Datasets. Journal of Mountain Science, 18(4), 923-931. https://doi.org/10.1007/s11629-020-6305-y
  • Xu, N., Qin, R., Song, S. (2023). Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms. ISPRS Open Journal of Photogrammetry and Remote Sensing, 8, 100032. https://doi.org/https://doi.org/10.1016/j.ophoto.2023.100032
  • Zapico, I., Laronne, J. B., Sánchez Castillo, L., Martín Duque, J. F. (2021). Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion. Remote Sensing, 13(17), 3353.
  • Zhang, Z., Zhu, L. (2023). A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones, 7(6), 398.
  • Zhou, Y., Daakir, M., Rupnik, E., Pierrot-Deseilligny, M. (2020). A Two-Step Approach for the Correction of Rolling Shutter Distortion in UAV Photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 51-66. https://doi.org/10.1016/ j.isprsjprs.2019.11.020
Yıl 2023, Cilt: 10 Sayı: 4, 77 - 89, 26.12.2023
https://doi.org/10.30897/ijegeo.1344526

Öz

Proje Numarası

FAY-2022-19793

Kaynakça

  • Akturk, E., Altunel, A. O. (2019). Accuracy Assessment of a Low-Cost UAV Derived Digital Elevation Model (DEM) in a Highly Broken and Vegetated Terrain. Measurement, 136, 382-386. https://doi.org/https://doi.org/10.1016/j.measurement.2018.12.101
  • Bailey, G., Li, Y., McKinney, N., Yoder, D., Wright, W., Washington-Allen, R. (2022). Las2DoD: Change Detection Based on Digital Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty. Remote Sensing, 14(7), 1537. https://www.mdpi.com/2072-4292/14/7/1537
  • Bayırhan, I., Gazioğlu, C. (2020). Use of Unmanned Aerial Vehicles (UAV) and Marine Environment Simulator in Oil Pollution Investigations, Baltic J. Modern Computing, 8(2), 327-336, doi.10.22364/bjmc.2020.8.2.08
  • Bi, R., Gan, S., Yuan, X., Li, R., Gao, S., Luo, W., Hu, L. (2021). Studies on Three-Dimensional (3D) Accuracy Optimization and Repeatability of UAV in Complex Pit-Rim Landforms As Assisted by Oblique Imaging and RTK Positioning. Sensors, 21(23), 8109.
  • Bruno, N., Forlani, G. (2023). Experimental Tests and Simulations on Correction Models for the Rolling Shutter Effect in UAV Photogrammetry. Remote Sensing, 15(9), 2391.
  • Carpenter, A., Lawrence, J. A., Ghail, R., Mason, P. J. (2023). The Development of Copper Clad Laminate Horn Antennas for Drone Interferometric Synthetic Aperture Radar. Drones, 7(3), 215.
  • Dahlin Rodin, C., de Alcantara Andrade, F. A., Hovenburg, A. R., Johansen, T. A. (2019). A Survey of Practical Design Considerations of Optical Imaging Stabilization Systems for Small Unmanned Aerial Systems. Sensors, 19(21), 4800.
  • Deliry, S. I., Avdan, U. (2021). Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review. Journal of the Indian Society of Remote Sensing, 49(8), 1997-2017. https://doi.org/10.1007/s12524-021-01366-x
  • DJI. (2023). DJI Enterprise Phantom 4 RTK Specifications. Retrieved 26 July 2023 from https://enterprise.dji.com/phantom-4-rtk/specs
  • Elkhrachy, I. (2021). Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alexandria Engineering Journal, 60(6), 5579-5590. https://doi.org/https://doi.org/10.1016/j.aej.2021.04.011
  • Ergun, B., Sahin, C., Bilucan, F. (2023). Level of Detail (LoD) Geometric Analysis of Relief Mapping Employing 3D Modeling via UAV Images in Cultural Heritage Studies. Heritage Science, 11(1), 194. https://doi.org/10.1186/s40494-023-01041-z
  • Fanta-Jende, P., Steininger, D., Bruckmüller, F., Sulzbachner, C. (2020). A Versatile UAV Near Real-Time Mapping Solution for Disaster Reponses – Concept, Ideas and Implementation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 429-435. https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-429-2020
  • Gazioğlu, C., Varol, ÖE., Şeker, DZ., Çağlar, N. (2017). Determination of the Environmental Impacts of Marine Accidents Using UAV and RS Technologies, 19th MESAEP Symposium on Environmental and Health Inequity, Roma, ITALYA, 3-6 Dec 2017.
  • Gafurov, A. (2021). The Methodological Aspects of Constructing a High-Resolution DEM of Large Territories Using Low-Cost UAVs on the Example of the Sarycum Aeolian Complex, Dagestan, Russia. Drones, 5(1), 7.
  • Gašparović, M., Jurjević, L. (2017). Gimbal Influence on the Stability of Exterior Orientation Parameters of UAV Acquired Images. Sensors, 17(2), 401.
  • Giordan, D., Adams, M. S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., De Berardinis, P., Dominici, D., Godone, D., Hobbs, P., Lechner, V., Niedzielski, T., Piras, M., Rotilio, M., Salvini, R., Segor, V., Sotier, B., Troilo, F. (2020). The Use of Unmanned Aerial Vehicles (UAVs) for Engineering Geology Applications. Bulletin of Engineering Geology and the Environment, 79(7), 3437-3481. https://doi.org/10.1007/s10064-020-01766-2
  • Granados-Bolaños, S., Quesada-Román, A., Alvarado, G. E. (2021). Low-Cost UAV Applications in Dynamic Tropical Volcanic Landforms. Journal of Volcanology and Geothermal Research, 410, 107143. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2020.107143
  • Guenzi, D., Allasia, P., Baldo, M., Giordan, D. (2019). Open Source, Low-Cost and Modular Fixed-Wing UAV with BVLOS Flight Capabilities for Geohazards Monitoring and Surveying. 2019 IEEE 5th International Workshop on Metrology for AeroSpace Turin, Italy.
  • Guth, P. L., Van Niekerk, A., Grohmann, C. H., Muller, J.-P., Hawker, L., Florinsky, I. V., Gesch, D., Reuter, H. I., Herrera-Cruz, V., Riazanoff, S., López-Vázquez, C., Carabajal, C. C., Albinet, C., Strobl, P. (2021). Digital Elevation Models: Terminology and Definitions. Remote Sensing, 13(18), 3581.
  • Gündüz, S. (2023). UAV Image-Based Plan Drawing Method in Submerged Terrestrial Archaeological Settlements: The case of Kibotos. International Journal of Environment and Geoinformatics, 10(1), 139-145. https://doi.org/10.30897/ijegeo.1231224
  • Habib, A., Akdim, N., El Ghandour, F.-e., Labbassi, K., Khoshelham, K., Menenti, M. (2017). Extraction and accuracy assessment of high-resolution DEM and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala (Morocco). Earth Science Informatics, 10(2), 197-217. https://doi.org/10. 1007/s12145-017-0287-5
  • Harvey, P., Körtner, G. (2016). ExifTool. Retrieved 12.08.2023 from https://exiftool.org/
  • Hill, A. C. (2019). Economical Drone Mapping for Archaeology: Comparisons of Efficiency and Accuracy. Journal of Archaeological Science: Reports, 24, 80-91. https://doi.org/https://doi.org/ 10.1016/j.jasrep.2018.12.011
  • Hill, A. C., Rowan, Y. M. (2022). The Black Desert Drone Survey: New Perspectives on an Ancient Landscape. Remote Sensing, 14(3), 702.
  • Hong-Xia, C., De-Zhu, G., Zhuo, L. (2013). Research on Image Motion Blur for Low Altitude Remote Sensing. Information Technology Journal, 12(23), 7096.
  • Incekara, A. H., Seker, D. Z. (2021). Rolling Shutter Effect on The Accuracy of Photogrammetric Product Produced by Low-Cost UAV. International Journal of Environment and Geoinformatics, 8(4), 549-553.
  • Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., Lin, Y. (2010). A Low-Cost Multi-Sensoral Mobile Mapping System and Its Feasibility for Tree Measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 514-522. https://doi.org/10.1016/j.isprsjprs.2010.08.002
  • Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. d. J., Enciso, J. (2021). Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS International Journal of Geo-Information, 10(5), 285. https://www.mdpi.com/2220-9964/10/5/285
  • Kalacska, M., Lucanus, O., Arroyo-Mora, J. P., Laliberté, É., Elmer, K., Leblanc, G., Groves, A. (2020). Accuracy of 3D Landscape Reconstruction without Ground Control Points Using Different UAS Platforms. Drones, 4(2), 13.
  • Kim, N., Bae, J., Kim, C., Park, S., Sohn, H.-G. (2020). Object Distance Estimation Using a Single Image Taken from a Moving Rolling Shutter Camera. Sensors, 20(14), 3860.
  • Kovanič, Ľ., Topitzer, B., Peťovský, P., Blišťan, P., Gergeľová, M. B., Blišťanová, M. (2023). Review of Photogrammetric and Lidar Applications of UAV. Applied Sciences, 13(11), 6732.
  • Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ., Palková, J., Zelizňaková, V. (2016). Use of Low-Cost UAV Photogrammetry to Analyze tthe Accuracy of A Digital Elevation Model in a Case Study. Measurement, 91, 276-287. https://doi.org/10.1016/j.measurement.2016.05.028
  • Latif, M. A. (2022). Improving Stability of Aerial Videos Acquired Through Vision Sensors Onboard UAVs for Applications in Precision Agriculture. Signal, Image and Video Processing, 16(5), 1263-1270. https://doi.org/10.1007/s11760-021-02077-z
  • Lee, H., Kim, D. j. (2022). Generation of Dense and High-Precision Digital Elevation Model Using Low-Cost Unmanned Aerial Vehicle and Space-Borne TanDEM-X to Measure Exposed Area Change Due to Tidal Invasion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 6899-6911. https://doi.org/10.1109/JSTARS.2022. 3195744
  • Lewicka, O., Specht, M., Specht, C. (2022). Assessment of the Steering Precision of a UAV along the Flight Profiles Using a GNSS RTK Receiver. Remote Sensing, 14(23), 6127.
  • Mah, S. B., Cryderman, C. S. (2015). Implementation of An Unmanned Aerial Vehicle System for Large Scale Mapping. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W4, 47-54. https://doi.org/ 10.5194/isprsarchives-XL-1-W4-47-2015
  • Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., Gabbianelli, G. (2013). Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sensing, 5(12), 6880-6898.
  • Michez, A., Philippe, L., David, K., Sébastien, C., Christian, D., Bindelle, J. (2020). Can Low-Cost Unmanned Aerial Systems Describe the Forage Quality Heterogeneity? Insight from a Timothy Pasture Case Study in Southern Belgium. Remote Sensing, 12(10), 1650.
  • Moudrý, V., Urban, R., Štroner, M., Komárek, J., Brouček, J., Prošek, J. (2019). Comparison of a Commercial and Home-Assembled Fixed-Wing UAV for Terrain Mapping of a Post-Mining Site Under Leaf-Off Conditions. International Journal of Remote Sensing, 40(2), 555-572. https://doi.org/10.1080/ 01431161.2018.1516311
  • Peng, Y., Tang, Z., Zhao, G., Cao, G., Wu, C. (2022). Motion Blur Removal for UAV-Based Wind Turbine Blade Images Using Synthetic Datasets. Remote Sensing, 14(1), 87.
  • Pichaikuppan, V. R. A., Narayanan, R. A., Rangarajan, A. (2014). Change Detection in the Presence of Motion Blur and Rolling Shutter Effect. Computer Vision – ECCV 2014, Cham.
  • Pricope, N. G., Mapes, K. L., Woodward, K. D., Olsen, S. F., Baxley, J. B. (2019). Multi-Sensor Assessment of the Effects of Varying Processing Parameters on UAS Product Accuracy and Quality. Drones, 3(3), 63.
  • Rhee, S., Kim, T. (2016). Dense 3D Point Cloud Generation from UAV Images from Image Matching and Global Optimazation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 1005-1009. https://doi.org/10.5194/isprs-archives-XLI-B1-1005-2016
  • Roth, L., Hund, A., Aasen, H. (2018). PhenoFly Planning Tool: Flight Planning for High-Resolution Optical Remote Sensing with Unmanned Areal Systems. Plant Methods, 14(1), 116. https://doi.org/10.1186/s13007-018-0376-6
  • Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., Aksamitauskas, V. Č. (2015). The Surface Modelling Based on UAV Photogrammetry and Qualitative Estimation. Measurement, 73, 619-627. https://doi.org/10.1016/j.measurement.2015.04.018
  • Santise, M., Fornari, M., Forlani, G., Roncella, R. (2014). Evaluation of DEM Generation Accuracy from UAS Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5, 529-536. https://doi.org/10. 5194/isprsarchives-XL-5-529-2014
  • Sertić, H., Paar, R., Tomić, H., Ravlić, F. (2022). Influence of Flight Height and Image Sensor on the Quality of the UAS Orthophotos for Cadastral Survey Purposes. Land, 11(8), 1250.
  • Shawky, M., Moussa, A., Hassan, Q. K., El-Sheimy, N. (2019). Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models. Remote Sensing, 11(3), 235.
  • Sieberth, T., Wackrow, R., Chandler, J. H. (2014). Influence of blur on feature matching and a geometric approach for photogrammetric deblurring. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3, 321-326. https://doi.org/10.5194/isprsarchives-XL-3-321-2014
  • Sieberth, T., Wackrow, R., Chandler, J. H. (2015). UAV Image Blur and Its Influence and Ways to Correct It. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W4, 33-39. https://doi.org/10.5194/ isprsarchives-XL-1-W4-33-2015
  • Teague, S., Chahl, J. (2023). Strapdown Celestial Attitude Estimation from Long Exposure Images for UAV Navigation. Drones, 7(1), 52.
  • Uysal, M., Toprak, A. S., Polat, N. (2015). DEM Generation with UAV Photogrammetry and Accuracy Analysis in Sahitler Hill. Measurement, 73, 539-543. https://doi.org/https://doi.org/10.1016/j.measurement.2015.06.010
  • Ventura, D., Bruno, M., Jona Lasinio, G., Belluscio, A., Ardizzone, G. (2016). A Low-Cost Drone Based Application for Identifying and Mapping of Coastal Fish Nursery Grounds. Estuarine, Coastal and Shelf Science, 171, 85-98. https://doi.org/10.1016/ j.ecss.2016.01.030
  • Villanueva, J. K. S., Blanco, A. C. (2019). Optimization of Ground Control Point (GCP) Configuration for Unmanned Aerial Vehicle (UAV) Survey Using Structure from Motion (SfM). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W12, 167-174. https://doi.org/10.5194/isprs-archives-XLII-4-W12-167-2019
  • Wang, D., Shu, H. (2022). Accuracy Analysis of Three-Dimensional Modeling of a Multi-Level UAV without Control Points. Buildings, 12(5), 592.
  • Wang, Y. Z., Ye, Q. H. (2021). ArcPycor: An Open-Source Automated GIS Tool to Co-Register Elevation Datasets. Journal of Mountain Science, 18(4), 923-931. https://doi.org/10.1007/s11629-020-6305-y
  • Xu, N., Qin, R., Song, S. (2023). Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms. ISPRS Open Journal of Photogrammetry and Remote Sensing, 8, 100032. https://doi.org/https://doi.org/10.1016/j.ophoto.2023.100032
  • Zapico, I., Laronne, J. B., Sánchez Castillo, L., Martín Duque, J. F. (2021). Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion. Remote Sensing, 13(17), 3353.
  • Zhang, Z., Zhu, L. (2023). A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones, 7(6), 398.
  • Zhou, Y., Daakir, M., Rupnik, E., Pierrot-Deseilligny, M. (2020). A Two-Step Approach for the Correction of Rolling Shutter Distortion in UAV Photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 51-66. https://doi.org/10.1016/ j.isprsjprs.2019.11.020
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Research Articles
Yazarlar

Mehmet Doğruluk 0000-0001-6698-651X

İlyas Yalçın 0000-0002-4357-937X

Proje Numarası FAY-2022-19793
Erken Görünüm Tarihi 2 Aralık 2023
Yayımlanma Tarihi 26 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 4

Kaynak Göster

APA Doğruluk, M., & Yalçın, İ. (2023). Performance Analysis of a Drone Development Kit-derived Digital Elevation Model. International Journal of Environment and Geoinformatics, 10(4), 77-89. https://doi.org/10.30897/ijegeo.1344526