In this work, SnO2 and Ti-doped SnO2 thin films were produced by successive ionic absorption and reaction methods on platin interdigital contacts. The thin films produced were not annealed. Structural properties of amorphous thin films were investigated using X-ray Diffraction (XRD), morphological properties using Scanning Electron Microscopy (SEM), optical and electrical properties of Ultraviolet-visible Spectrophotometer (UV-VIS) and Keithley 2400 instruments. From the XRD results, it was determined that the thin films were an amorphous structure. Surface analysis by SEM shows that all films are coated and smooth. The current-voltage measurements show that thin films are ohmic. Lnρ results also show that the lowest resistance value for SnO2 thin films is after 320 °C temperature and after 360 °C temperature for Ti-doped SnO2 thin films.
[1] Alizadeh, A., Rajabi, Y., Bagheri–Mohagheghi, M. M., (2022). Effect of crystallinity on the nonlinear optical properties of indium–tin oxide thin films, Optic Materials, 131, 112589.
[2] Li, Z., Song, J., Duana, X., Wua, H., Lian, N., Xue, J., Meng X., Yang, F., Li, J., Wang, Y., (2021). F and Al co-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis: Effects of substrate temperature on physical properties, Journal of Alloys and Compound, 858, 158076.
[3] Yates, H. M., Evans, P., Sheel, D. W., (2013). The influence of F-doping in SnO2 thin films, Physics Procedia, 46, 19, 159–166.
[4] Zhang, X., Yang, H., (2012). Structural characterization and gas sensing property of Cd-doped SnO2 nanocrystallites synthesized by mechanochemical reaction, Sensors and Actuators B: Chemical, 173, 127–132.
[5] Athira, M., Bharath, S. P., Angappane, S., (2022). SnO2-NiO heterojunction based self-powered UV photodetectors, Sensors and Actuators A: Physical, 340, 113540.
[6] Huang, C., Huang, Ni, Y., Lin, P., Fu, N., Fan, B., Xu, B., Zhang, W., (2021). Highly-Crystalline SnO2 Thin Films for Efficient Planar Perovskite Solar Cells, ACS Applied Energy Materials, 5, 5704-5710.
[7] Hassanien, A., Hashem, H., Kamel G., Soltan, Moustafa, A., Hammam, M., S., Ramadan, A. A., (2016). Performance of Transparent Conducting Fluorine-doped Tin Oxide Films for Applications in Energy Efficient Devices, International Journal of Thin Films Science and Technology, 65, 55–65.
[8] Antonaia, A., Menna, P., Addonizio, M. L., Crocchiolo, M., (1992). Transport properties of polycrystalline tin oxide films,” Solar Energy Materials and Solar Cells, 28, 167–173.
[9] Sirohi, K., Kumar, S., Singh, V., Chauhan, N., (2020). Hydrothermal synthesis of Cd-doped SnO2 nanostructures and their structural, morphological and optical properties, Materials Today Proceedings, 21, 1991–1998.
[10] Güldüren, M. E., Taşer, A., Güney, H., (2022). Effects of variable Cd doping concentrations on structural and optical properties of SILAR grown SnO2 thin films, Micro and Nanostructures, 165, 207206.
[11] Saadeddin, I., Buffeteau, T., Campet, G., (2007). Synthesis and characterization of single- and Co-doped SnO2 thin films for optoelectronic applications,” Applied Surface Science, 253, 12, 5240–5249.
[12] Cho, Y., Parmar, N. S., Nahm, S., Choi, J. W., (2017). Full range optical and electrical properties of Zn-doped SnO2 and oxide/metal/oxide multilayer thin films deposited on flexible PET substrate, Journal of Alloys and Compound, 694, 217–222.
[13] Hadri, A., Chafi, F. Z., Hat, A., Rouchdi, M., (2017). Structural, optical and electrical properties of Fe doped SnO2 prepared by spray pyrolysis, Journal of Materials and Environmental Science, 8, 2, 420–425.
[14] Atay, F., Akyuz, I., (2022). Structural, optical, surface, and photocatalytic properties of SnO2 films produced by ultrasonic spray pyrolysis, Journal of Sol-Gel Science and Technology, 102, 2, 303–312.
[15] Liu, P. Y., Chen, J. F., Sun, W. D., (2004). Characterizations of SnO2 and SnO2:Sb thin films prepared by PECVD,” Vacuum, 76, 1, 7–11.
[16] Ferreira, M., Loureiro, J., Nogueira, A., Rodrigues, A., Martins, R., Ferreira, I., (2015). SnO2 thin Film Oxides Produced by rf Sputtering for Transparent Thermoelectric Devices,” Materials Today: Proceedings, 2, 2, 647–653.
[17] Karaduman Er, I., Çorlu, T., Yıldırım, M. A., Ateş, A., Acar, S., (2019). Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors, Journal of Polytechnic, 0900, 4, 1189–1196.
[18] Sayeed, M. A., Rouf, H. K., (2021). Al-doped SnO2 thin films: impacts of high temperature annealing on the structural, optical and electrical properties, Journal of Materials Research Technology, 15, 3409–3425.
[19] Choudhury, B., Choudhury, A., (2014). Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles,” Physica E: Low-Dimensional Systems and Nanostructures, 56, 364–371.
[20] Patil, N. B., Nimbalkar, A. R., Patil, M. G., (2018). ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection, Materials Science Engineerings: B, 227, 2, 53–60.
[21] Suriya, P., Prabhu, M., Jagannathan, K., (2022). Synthesis and structural, optical and photovoltaic characteristics of pure and Ag doped TiO2 nanoparticles for dye sensitized solar cell application, Materials Today Proceedings, 65, 100–105.
SnO2 ve Titanyum katkılı SnO2 İnce Filmlerin Morfolojik, Yapısal ve Elektriksel Karakterizasyonun İncelenmesi
Bu çalışmada, platin interdigital kontakları üzerinde ardışık iyonik absorpsiyon ve reaksiyon yöntemleri ile SnO2 ve Ti katkılı SnO2 ince filmler üretilmiştir. Üretilen ince filmler tavlanmamıştır. Amorf ince filmlerin yapısal özellikleri, X-Işını Kırınım (XRD) kullanılarak, morfolojik özellikleri, Taramalı Elektron Mikroskobu (SEM) kullanılarak, Ultraviyole-görünür Spektrofotometre (UV-VIS) ve Keithley 2400 cihazlarının optik ve elektriksel özellikleri araştırıldı. XRD sonuçlarından ince filmlerin amorf bir yapı olduğu belirlendi. SEM ile yapılan yüzey analizi, tüm filmlerin kaplanmış ve pürüzsüz olduğunu göstermektedir. Akım-voltaj ölçümleri, ince filmlerin omik olduğunu göstermektedir. Lnρ sonuçları ayrıca, SnO2 ince filmler için en düşük direnç değerinin 320 °C sıcaklıktan sonra ve Ti katkılı SnO2 ince filmler için 360 °C sıcaklıktan sonra olduğunu göstermektedir.
[1] Alizadeh, A., Rajabi, Y., Bagheri–Mohagheghi, M. M., (2022). Effect of crystallinity on the nonlinear optical properties of indium–tin oxide thin films, Optic Materials, 131, 112589.
[2] Li, Z., Song, J., Duana, X., Wua, H., Lian, N., Xue, J., Meng X., Yang, F., Li, J., Wang, Y., (2021). F and Al co-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis: Effects of substrate temperature on physical properties, Journal of Alloys and Compound, 858, 158076.
[3] Yates, H. M., Evans, P., Sheel, D. W., (2013). The influence of F-doping in SnO2 thin films, Physics Procedia, 46, 19, 159–166.
[4] Zhang, X., Yang, H., (2012). Structural characterization and gas sensing property of Cd-doped SnO2 nanocrystallites synthesized by mechanochemical reaction, Sensors and Actuators B: Chemical, 173, 127–132.
[5] Athira, M., Bharath, S. P., Angappane, S., (2022). SnO2-NiO heterojunction based self-powered UV photodetectors, Sensors and Actuators A: Physical, 340, 113540.
[6] Huang, C., Huang, Ni, Y., Lin, P., Fu, N., Fan, B., Xu, B., Zhang, W., (2021). Highly-Crystalline SnO2 Thin Films for Efficient Planar Perovskite Solar Cells, ACS Applied Energy Materials, 5, 5704-5710.
[7] Hassanien, A., Hashem, H., Kamel G., Soltan, Moustafa, A., Hammam, M., S., Ramadan, A. A., (2016). Performance of Transparent Conducting Fluorine-doped Tin Oxide Films for Applications in Energy Efficient Devices, International Journal of Thin Films Science and Technology, 65, 55–65.
[8] Antonaia, A., Menna, P., Addonizio, M. L., Crocchiolo, M., (1992). Transport properties of polycrystalline tin oxide films,” Solar Energy Materials and Solar Cells, 28, 167–173.
[9] Sirohi, K., Kumar, S., Singh, V., Chauhan, N., (2020). Hydrothermal synthesis of Cd-doped SnO2 nanostructures and their structural, morphological and optical properties, Materials Today Proceedings, 21, 1991–1998.
[10] Güldüren, M. E., Taşer, A., Güney, H., (2022). Effects of variable Cd doping concentrations on structural and optical properties of SILAR grown SnO2 thin films, Micro and Nanostructures, 165, 207206.
[11] Saadeddin, I., Buffeteau, T., Campet, G., (2007). Synthesis and characterization of single- and Co-doped SnO2 thin films for optoelectronic applications,” Applied Surface Science, 253, 12, 5240–5249.
[12] Cho, Y., Parmar, N. S., Nahm, S., Choi, J. W., (2017). Full range optical and electrical properties of Zn-doped SnO2 and oxide/metal/oxide multilayer thin films deposited on flexible PET substrate, Journal of Alloys and Compound, 694, 217–222.
[13] Hadri, A., Chafi, F. Z., Hat, A., Rouchdi, M., (2017). Structural, optical and electrical properties of Fe doped SnO2 prepared by spray pyrolysis, Journal of Materials and Environmental Science, 8, 2, 420–425.
[14] Atay, F., Akyuz, I., (2022). Structural, optical, surface, and photocatalytic properties of SnO2 films produced by ultrasonic spray pyrolysis, Journal of Sol-Gel Science and Technology, 102, 2, 303–312.
[15] Liu, P. Y., Chen, J. F., Sun, W. D., (2004). Characterizations of SnO2 and SnO2:Sb thin films prepared by PECVD,” Vacuum, 76, 1, 7–11.
[16] Ferreira, M., Loureiro, J., Nogueira, A., Rodrigues, A., Martins, R., Ferreira, I., (2015). SnO2 thin Film Oxides Produced by rf Sputtering for Transparent Thermoelectric Devices,” Materials Today: Proceedings, 2, 2, 647–653.
[17] Karaduman Er, I., Çorlu, T., Yıldırım, M. A., Ateş, A., Acar, S., (2019). Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors, Journal of Polytechnic, 0900, 4, 1189–1196.
[18] Sayeed, M. A., Rouf, H. K., (2021). Al-doped SnO2 thin films: impacts of high temperature annealing on the structural, optical and electrical properties, Journal of Materials Research Technology, 15, 3409–3425.
[19] Choudhury, B., Choudhury, A., (2014). Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles,” Physica E: Low-Dimensional Systems and Nanostructures, 56, 364–371.
[20] Patil, N. B., Nimbalkar, A. R., Patil, M. G., (2018). ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection, Materials Science Engineerings: B, 227, 2, 53–60.
[21] Suriya, P., Prabhu, M., Jagannathan, K., (2022). Synthesis and structural, optical and photovoltaic characteristics of pure and Ag doped TiO2 nanoparticles for dye sensitized solar cell application, Materials Today Proceedings, 65, 100–105.
Bayram, A. B., & Çorlu, T. (2023). Investigation of SnO2 and Ti-Doped SnO2 Thin Films for Morphological, Structural and Electrical Characterization. International Journal of Engineering and Innovative Research, 5(1), 1-12. https://doi.org/10.47933/ijeir.1178891