TOPLAYICI PLAKA MALZEME VE KALINLIĞININ ELEKTROSPUN ELYAF İNCELİĞİ ÜZERİNDEKİ ETKİSİNİN TEORİK BİR ANALİZ İLE İNCELENMESİ
Year 2023,
, 223 - 236, 13.10.2023
Gonca Şimşek Gündüz
,
Fatma Göktepe
,
Hafiz Alisoy
,
Özer Göktepe
Abstract
Bu çalışmanın amacı, elektro çekimde toplayıcı olarak farklı kalınlık ve malzemelerdeki metal plakalar kullanılarak üretilen liflerin morfolojik özelliklerinin incelenmesidir. Bunun için 1 mm, 5 mm, 10 mm kalınlığında yuvarlak şekilli alüminyum ve bakır levhalar kullanılmıştır. Sonuçlar, alüminyum toplayıcılara kıyasla bakır toplayıcılar kullanıldığında çok daha ince liflerin elde edildiğini göstermektedir. Toplayıcı kalınlığının etkisi incelendiğinde ise toplayıcı kalınlığı arttıkça lif inceliğinin arttığı gözlenmiştir. Ayrıca, alüminyum toplayıcı ve daha ince toplayıcı kullanıldığında toplayıcı üzerindeki liflerin toplanma alanının çok daha geniş olduğu gözlenmiş, bu da elektrolif çekiminde toplayıcı malzeme ve toplayıcı kalınlığının lif dizilişini ve lifler arası mesafeyi etkilediğini göstermektedir. Toplayıcı kalınlığının ve toplayıcı malzeme tipinin etkisi ile deneysel sonuçlar ışığında doğrulanmasına ilişkin teorik bir yaklaşım da bu çalışmada yer almaktadır.
References
- [1] Erkan, G., Erdogan, H., Kayacan, O., (2005). Tekstil sektöründe nanoteknoloji uygulamaları. Tekstil teknolojileri ve tekstil makineleri kongresi, Gaziantep, Türkiye.
- [2] Deıtzel, J. M., Kleinmeyer, J., Haris, D. and Beck Tan, N. C., (2001). The Effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261-272.
- [3] Grafe, T., Graham, K.M., (2003). Nanofiber webs from electrospinning, nonwovens in filtration. Fifth ınternational conference, Stuttgart, Germany.
- [4] Khan, N., (2012). Applications of electrospun nanofibers in the biomedical field. Studies by Undergraduate Researchers at Guelph, 5, 2, 63-73.
- [5] Wang, M., Yu, D.G., Li, X., Williams, G.R., (2020). The development and bioapplications of multifluid electrospinning. Materials Highlights, 1, 1-2, 1–13.
- [6] Yunus, H., Sabır, E.C., İçoğlu, H.İ., Yıldırım, B., Gülnaz, O., Topalbekiroğlu, M., (2023). Characterization and antibacterial activity of electrospun polyethylene oxide/chitosan nanofibers. Tekstil ve Konfeksiyon, 33, 1, 1-8.
- [7] Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., Ma, Z., (2005). An ıntroduction to electrospinning and nanofibers. World Scientific Publishing Co. Pte. Ltd., Singapore.
- [8] Kenawy, E. R., Layman, J. M., Watkins, J. R., Bowlin, G. L., Matthews, J. A., Simpson, D. G., Wnek, G. E., (2003). Electrospinning of poly (ethylene-co-vinyl alcohol) fibers. Biomaterials, 24, 6, 907-913.
- [9] Reneker, D.H, Yarin, A.L., Koombhongse, S., Fong, H., (2000). Bending instability of electrical charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87, 9, 4531-4547.
- [10] Lyons, J., Li, C., Ko, F., (2004). Melt-electrospinning part I: Processing parameters and geometric properties. Polymer, 45, 7597-7603.
- [11] Agarwal, S., Greiner, A., (2011). On the way to clean and safe electrospinning- green electrospinning: emulsion and suspension electrospinning. Polymers for Advanced Technologies, 22, 3, 372-378.
- [12] Yee, W. A., Nguyen, A. C., Lee, P. S., Kotaki, M., Liu, Y., Tan, B. T., Mhaisalkar, S. G., Lu, X., (2008). Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer, 49, 19, 4196-4203.
- [13] Zussman, E., Theron, A., Yarin, A.L., (2002). Assembly of electrospun nanofibers into crossbars. 2nd IEEE Conference on Nanotechnology, 283-286, Washington D.C.-USA.
- [14] Sutasinpromprae, J., Jitjaicham, S., Nithitanakul, M., Meechaisue, C., Supaphol, P., (2006). Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polymer International, 55, 8, 825-833.
- [15] Ding, B., Kimura, E., Sato, T., Fujita, S., Shiratori, S., (2004). Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer, 45, 1895-1902.
- [16] Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., Zhang, M., (2005). Electrospun chitosan-based nanofibers and their cellular compotibility. Biomaterials, 26, 6176-6184.
- [17] Wang, S., Yang, Y., Zhang, Y., Fei, X., Zhou, C., Zhang, Y., Li, Y., Yang, Q., Song, Y., (2014). Fabrication of large‐scale superhydrophobic composite films with enhanced tensile properties by multinozzle conveyor belt electrospinning. Journal of Applied Polymer Science, 131, 1, 39735-39744.
- [18] Huang, Z.M., Zhang, Y.Z., Ramakrishna, S., Lim, C.T., (2004). Electrospinning and mechanical characterization of gelatin nanofibers, Polymer, 45, 5361-5368.
- [19] Ishii, Y., Sakai, H., Murata, H., (2008). A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers. Materials Letters, 62, 19, 3370-3372.
- [20] Manuel, A., Rosa, M., Riberio, V., Maraschin, M., Beatriz, V., (2017). Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Materials Letters, 193, 154-157.
- [21] Sattary, M., Rafienia, M., Khorasani, M.T., Salehi, H., (2019). The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold. J. Biomed. Mater. Res. B Appl. Biomater, 107, 4, 933–950.
- [22] Çavdar, F.Y., (2020). Elektrospinning cihazının işlem parametrelerinin optimizasyonu ve aradaki ilişkilerin deneysel modellenmesi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Bursa.
- [23] Persano, L., Camposeo, A., Tekmen, C., Pisignano, D., (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromolecular Materials and Engineering, 298, 5, 504-520.
- [24] Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63, 15, 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7.
- [25] İpek, M., Canbolat, M.F., (2017). Farklı tipteki toplayıcı plakaların elektrostatik çekim ile elde edilen nanoliflerin morfolojisi üzerine etkilerinin araştırılması. Fırat Üniv. Müh. Bil. Dergisi, 29, 1, 161-170.
- [26] Andrady, A.L., (2008). Science and technology of polymer nanofibers. Wiley Pres, New Jersey.
- [27] Pan, H., Li, L., Hu, L., Cui, X., (2006). Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer, 47, 4901-4904.
- [28] Kim, H. S., Kim, K., Jin, H.J., Chin, I.J., (2005). Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(L-lactide) and poly(lactideco-glycolide). In macromolecular symposia, 145-154, Wıley-VCH, Verlag.
- [29] Liu, H.Q., Hsieh, Y.L., (2002). Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science Part B: Polymer Physics, 40, 18, 2119-2129.
- [30] Stanger, J., Tucker, N., Wallace, A., Larsen, N., Staiger, M., Reeves, R., (2009). The effect of electrode configuration and substrate material on the mass deposition rate of electrospinning. Journal of Applied Polymer Science, 112, 3, 1729-1737.
- [31] Pham, Q. P., Sharma, U., Mikos, A. G., (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue engineering, 12, 1197-1211.
- [32] Göktepe, F., Şimşek, G., Göktepe, Ö., Çömlekçi, S., (2010). The effect of material and thickness of collector electrode on fiber fineness in electrospinning. The Fiber Society Spring 2010 International Conference, Bursa, Turkey.
- [33] Göktepe, F., Mülayim, B.B., Göktepe, Ö., Alisoy, H. & Sabit, B., (2022). The effect of collector parameters on nanofiber yarns produced by electro yarn spinning machine with conical collector. The Journal of The Textile Institute, 113, 9, 1785-1798, DOI: 10.1080/00405000.2021.1947640.
- [34] Sabit, B., (2019). Elektro lif çekim (electrospınnıng) yöntemiyle üretilen nanolif iplik özelliklerinin iyileştirilmesi. Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Tekirdağ.
- [35] Landau, L.D., Lifshitz, E.M., (2013). Fluid Mechanics: Course of Theoretical Physics, Volume 6, Elsevier.
[36] Aliyev (Alisoy), H. Z., Koksal, M., Aksoy, I., Yakinci, M. E., (1998). Charging and discharging of particles on the low potential electrode under bipolar corona condition. J. Phys.D: Appl. Phys., 31, 1723-1727.
[37] Alisoy, H. Z., Alisoy, G.T., Hamamci, S. E., (2004). Combined kinetic charging of particles on the precipitating electrode in a corona field. Journal of Physics D-Applied Physics, 37, 10, 1459-1466.
- [38] Shutov, A.A., (2006). Forming fibrous filter membranes by electrospinning. ZhTF,76, 133-136.
- [39] Kirichenko, V. N., Petryanov, I.V., Suprun, N.N., Shutov, A.A., (1986). Asymptotic radius of a weakly conducting liquid jet in an electric field. DAN SSSR, 289, 817-820.
AN INVESTIGATION OF THE EFFECT OF COLLECTOR PLATE MATERIAL AND THICKNESS ON ELECTROSPUN FIBER FINENESS INCLUDING A THEORETICAL ANALYSIS
Year 2023,
, 223 - 236, 13.10.2023
Gonca Şimşek Gündüz
,
Fatma Göktepe
,
Hafiz Alisoy
,
Özer Göktepe
Abstract
The aim of this study is to examine the morphological properties of fibers produced by using metal plates of different thickness and materials as collectors in electrospinning. For this, circular shaped aluminum and copper plates of 1 mm, 5 mm, 10 mm thickness were used. The results show that much finer fibers were obtained when copper collectors are used compared to aluminum collectors. When the effect of collector thickness is analyzed, it was observed that fiber fineness increased as the collector thickness increased. In addition, it was observed that collection area of fibers on collector is much larger when aluminum collector and thinner collector is used showing that collector material and collector thickness affect fiber arrangement and interfiber spacing in electrospinning. A theoretical approach is also included in this work regarding effect of collector thickness and collector material type together with its verification in the light of experimental results.
References
- [1] Erkan, G., Erdogan, H., Kayacan, O., (2005). Tekstil sektöründe nanoteknoloji uygulamaları. Tekstil teknolojileri ve tekstil makineleri kongresi, Gaziantep, Türkiye.
- [2] Deıtzel, J. M., Kleinmeyer, J., Haris, D. and Beck Tan, N. C., (2001). The Effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261-272.
- [3] Grafe, T., Graham, K.M., (2003). Nanofiber webs from electrospinning, nonwovens in filtration. Fifth ınternational conference, Stuttgart, Germany.
- [4] Khan, N., (2012). Applications of electrospun nanofibers in the biomedical field. Studies by Undergraduate Researchers at Guelph, 5, 2, 63-73.
- [5] Wang, M., Yu, D.G., Li, X., Williams, G.R., (2020). The development and bioapplications of multifluid electrospinning. Materials Highlights, 1, 1-2, 1–13.
- [6] Yunus, H., Sabır, E.C., İçoğlu, H.İ., Yıldırım, B., Gülnaz, O., Topalbekiroğlu, M., (2023). Characterization and antibacterial activity of electrospun polyethylene oxide/chitosan nanofibers. Tekstil ve Konfeksiyon, 33, 1, 1-8.
- [7] Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., Ma, Z., (2005). An ıntroduction to electrospinning and nanofibers. World Scientific Publishing Co. Pte. Ltd., Singapore.
- [8] Kenawy, E. R., Layman, J. M., Watkins, J. R., Bowlin, G. L., Matthews, J. A., Simpson, D. G., Wnek, G. E., (2003). Electrospinning of poly (ethylene-co-vinyl alcohol) fibers. Biomaterials, 24, 6, 907-913.
- [9] Reneker, D.H, Yarin, A.L., Koombhongse, S., Fong, H., (2000). Bending instability of electrical charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87, 9, 4531-4547.
- [10] Lyons, J., Li, C., Ko, F., (2004). Melt-electrospinning part I: Processing parameters and geometric properties. Polymer, 45, 7597-7603.
- [11] Agarwal, S., Greiner, A., (2011). On the way to clean and safe electrospinning- green electrospinning: emulsion and suspension electrospinning. Polymers for Advanced Technologies, 22, 3, 372-378.
- [12] Yee, W. A., Nguyen, A. C., Lee, P. S., Kotaki, M., Liu, Y., Tan, B. T., Mhaisalkar, S. G., Lu, X., (2008). Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer, 49, 19, 4196-4203.
- [13] Zussman, E., Theron, A., Yarin, A.L., (2002). Assembly of electrospun nanofibers into crossbars. 2nd IEEE Conference on Nanotechnology, 283-286, Washington D.C.-USA.
- [14] Sutasinpromprae, J., Jitjaicham, S., Nithitanakul, M., Meechaisue, C., Supaphol, P., (2006). Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polymer International, 55, 8, 825-833.
- [15] Ding, B., Kimura, E., Sato, T., Fujita, S., Shiratori, S., (2004). Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer, 45, 1895-1902.
- [16] Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., Zhang, M., (2005). Electrospun chitosan-based nanofibers and their cellular compotibility. Biomaterials, 26, 6176-6184.
- [17] Wang, S., Yang, Y., Zhang, Y., Fei, X., Zhou, C., Zhang, Y., Li, Y., Yang, Q., Song, Y., (2014). Fabrication of large‐scale superhydrophobic composite films with enhanced tensile properties by multinozzle conveyor belt electrospinning. Journal of Applied Polymer Science, 131, 1, 39735-39744.
- [18] Huang, Z.M., Zhang, Y.Z., Ramakrishna, S., Lim, C.T., (2004). Electrospinning and mechanical characterization of gelatin nanofibers, Polymer, 45, 5361-5368.
- [19] Ishii, Y., Sakai, H., Murata, H., (2008). A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers. Materials Letters, 62, 19, 3370-3372.
- [20] Manuel, A., Rosa, M., Riberio, V., Maraschin, M., Beatriz, V., (2017). Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Materials Letters, 193, 154-157.
- [21] Sattary, M., Rafienia, M., Khorasani, M.T., Salehi, H., (2019). The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold. J. Biomed. Mater. Res. B Appl. Biomater, 107, 4, 933–950.
- [22] Çavdar, F.Y., (2020). Elektrospinning cihazının işlem parametrelerinin optimizasyonu ve aradaki ilişkilerin deneysel modellenmesi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Bursa.
- [23] Persano, L., Camposeo, A., Tekmen, C., Pisignano, D., (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromolecular Materials and Engineering, 298, 5, 504-520.
- [24] Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63, 15, 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7.
- [25] İpek, M., Canbolat, M.F., (2017). Farklı tipteki toplayıcı plakaların elektrostatik çekim ile elde edilen nanoliflerin morfolojisi üzerine etkilerinin araştırılması. Fırat Üniv. Müh. Bil. Dergisi, 29, 1, 161-170.
- [26] Andrady, A.L., (2008). Science and technology of polymer nanofibers. Wiley Pres, New Jersey.
- [27] Pan, H., Li, L., Hu, L., Cui, X., (2006). Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer, 47, 4901-4904.
- [28] Kim, H. S., Kim, K., Jin, H.J., Chin, I.J., (2005). Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(L-lactide) and poly(lactideco-glycolide). In macromolecular symposia, 145-154, Wıley-VCH, Verlag.
- [29] Liu, H.Q., Hsieh, Y.L., (2002). Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science Part B: Polymer Physics, 40, 18, 2119-2129.
- [30] Stanger, J., Tucker, N., Wallace, A., Larsen, N., Staiger, M., Reeves, R., (2009). The effect of electrode configuration and substrate material on the mass deposition rate of electrospinning. Journal of Applied Polymer Science, 112, 3, 1729-1737.
- [31] Pham, Q. P., Sharma, U., Mikos, A. G., (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue engineering, 12, 1197-1211.
- [32] Göktepe, F., Şimşek, G., Göktepe, Ö., Çömlekçi, S., (2010). The effect of material and thickness of collector electrode on fiber fineness in electrospinning. The Fiber Society Spring 2010 International Conference, Bursa, Turkey.
- [33] Göktepe, F., Mülayim, B.B., Göktepe, Ö., Alisoy, H. & Sabit, B., (2022). The effect of collector parameters on nanofiber yarns produced by electro yarn spinning machine with conical collector. The Journal of The Textile Institute, 113, 9, 1785-1798, DOI: 10.1080/00405000.2021.1947640.
- [34] Sabit, B., (2019). Elektro lif çekim (electrospınnıng) yöntemiyle üretilen nanolif iplik özelliklerinin iyileştirilmesi. Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Tekirdağ.
- [35] Landau, L.D., Lifshitz, E.M., (2013). Fluid Mechanics: Course of Theoretical Physics, Volume 6, Elsevier.
[36] Aliyev (Alisoy), H. Z., Koksal, M., Aksoy, I., Yakinci, M. E., (1998). Charging and discharging of particles on the low potential electrode under bipolar corona condition. J. Phys.D: Appl. Phys., 31, 1723-1727.
[37] Alisoy, H. Z., Alisoy, G.T., Hamamci, S. E., (2004). Combined kinetic charging of particles on the precipitating electrode in a corona field. Journal of Physics D-Applied Physics, 37, 10, 1459-1466.
- [38] Shutov, A.A., (2006). Forming fibrous filter membranes by electrospinning. ZhTF,76, 133-136.
- [39] Kirichenko, V. N., Petryanov, I.V., Suprun, N.N., Shutov, A.A., (1986). Asymptotic radius of a weakly conducting liquid jet in an electric field. DAN SSSR, 289, 817-820.