Araştırma Makalesi
BibTex RIS Kaynak Göster

Upscaling Results from Optimum Salinity Waterflooding at the Core Scale to a 3D Dynamic Grid

Yıl 2022, Cilt: 4 Sayı: 2, 114 - 125, 30.06.2022
https://doi.org/10.47933/ijeir.1098565

Öz

In order to fully quantify the volumes in place, capture the dynamics of fluid flow, production forecast and consequently economic potentials of oil and gas reservoirs, 3-dimensional (3D) models filled with relevant rock, fluid parameters and well information are built. This work carried out Optimum Salinity core flooding (OPTSWF) with progressive dilution of the invading brine at the laboratory scale. Next, the relative permeability curves for oil and water for the initial and final salinity conditions were obtained using Corey’s estimation. These curves were then loaded into a 3D dynamic model and the model was run under different salinity conditions to quantify the incremental oil recovery from Optimum Salinity Waterflooding and to visualize the process in 2D. Interestingly, the impact of optimizing the salinity was visibly seen in the 3D grid results and helped to visually explain the observed additional recovery from the OPSWF experiment.

Kaynakça

  • O. O. O. O. O. David Alaigba, "Optimized Salinity Water FLooding as an Improved Oil Recovery IOR Scheme in the Niger Delta," in SPE Nigeria Annual International Conference and Exhibition, August 11–13, 2020, Lagos, 2020.
  • J. Sheng, "Critical review of low-salinity waterflooding," Journal of Petroleum Science and Engineering, vol. 120, no. ISSN 0920-4105, pp. 216-224, 2014.
  • F. S. Allan Katende, "A critical review of low salinity water flooding: Mechanism, laboratory and field application," Journal of Molecular Liquids, vol. 278, no. ISSN 0167-7322, pp. 627-649, 2019.
  • T. G. Sorop, S. K. Masalmeh, B. M. Suijkerbuijk, H. A. v. d. Linde, H. Mahani, N. J. Brussee, F. A. Marcelis and A. Coorn, "Relative Permeability Measurements to Quantify the Low Salinity Flooding Effect at Field Scale," in Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November 2015, Abu Dhabi, 2015.
  • J. H. L. ,. A. E. a. K. D. S. Faisal Awad Aljuboori, "Using Low Salinity Waterflooding to Improve Oil Recovery in Naturally Fractured Reservoirs," Appl. Sci., vol. 10, no. 12, 2020.
  • O. O. O. O. David Alaigba, "Correlations for Estimating Change in Residual Oil Saturation During Low Salinity Water Flooding," International Journal of Engineering and Innovative Research, vol. 3, no. 2, pp. 101-114, 2021.
  • R. N. C. S. G. M. K. L. W. A. R. T. C. W. a. H. N. Horne, "Steam‐Water Relative Permeability," in World Geothermal Congress, Kyushu‐Tohoku, Japan, 28 May to 10 June, Tokyo, 2000.
  • O. O. O. O. Alaigba David, "Correlations for Estimating Reduction in Residual Oil Saturation During Low Salinity Waterflooding," International Journal of Engineering and Innovative, vol. 3, no. 2, pp. 101-114, 2021.

Upscaling Results from Optimum Salinity Waterflooding at the Core Scale to a 3D Dynamic Grid

Yıl 2022, Cilt: 4 Sayı: 2, 114 - 125, 30.06.2022
https://doi.org/10.47933/ijeir.1098565

Öz

In order to fully quantify the volumes in place, capture the dynamics of fluid flow, production forecast and consequently economic potentials of oil and gas reservoirs, 3-dimensional (3D) models filled with relevant rock, fluid parameters and well information are built. This work carried out Optimum Salinity core flooding (OPTSWF) with progressive dilution of the invading brine at the laboratory scale. Next, the relative permeability curves for oil and water for the initial and final salinity conditions were obtained using Corey’s estimation. These curves were then loaded into a 3D dynamic model and the model was run under different salinity conditions to quantify the incremental oil recovery from Optimum Salinity Waterflooding and to visualize the process in 2D. Interestingly, the impact of optimizing the salinity was visibly seen in the 3D grid results and helped to visually explain the observed additional recovery from the OPSWF experiment.

Kaynakça

  • O. O. O. O. O. David Alaigba, "Optimized Salinity Water FLooding as an Improved Oil Recovery IOR Scheme in the Niger Delta," in SPE Nigeria Annual International Conference and Exhibition, August 11–13, 2020, Lagos, 2020.
  • J. Sheng, "Critical review of low-salinity waterflooding," Journal of Petroleum Science and Engineering, vol. 120, no. ISSN 0920-4105, pp. 216-224, 2014.
  • F. S. Allan Katende, "A critical review of low salinity water flooding: Mechanism, laboratory and field application," Journal of Molecular Liquids, vol. 278, no. ISSN 0167-7322, pp. 627-649, 2019.
  • T. G. Sorop, S. K. Masalmeh, B. M. Suijkerbuijk, H. A. v. d. Linde, H. Mahani, N. J. Brussee, F. A. Marcelis and A. Coorn, "Relative Permeability Measurements to Quantify the Low Salinity Flooding Effect at Field Scale," in Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November 2015, Abu Dhabi, 2015.
  • J. H. L. ,. A. E. a. K. D. S. Faisal Awad Aljuboori, "Using Low Salinity Waterflooding to Improve Oil Recovery in Naturally Fractured Reservoirs," Appl. Sci., vol. 10, no. 12, 2020.
  • O. O. O. O. David Alaigba, "Correlations for Estimating Change in Residual Oil Saturation During Low Salinity Water Flooding," International Journal of Engineering and Innovative Research, vol. 3, no. 2, pp. 101-114, 2021.
  • R. N. C. S. G. M. K. L. W. A. R. T. C. W. a. H. N. Horne, "Steam‐Water Relative Permeability," in World Geothermal Congress, Kyushu‐Tohoku, Japan, 28 May to 10 June, Tokyo, 2000.
  • O. O. O. O. Alaigba David, "Correlations for Estimating Reduction in Residual Oil Saturation During Low Salinity Waterflooding," International Journal of Engineering and Innovative, vol. 3, no. 2, pp. 101-114, 2021.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

David Alaigba 0000-0003-3820-5717

D. O. Onaiwu

Olalekan Olafuyi

Ismaila Mohammed Bu kişi benim

Erken Görünüm Tarihi 30 Haziran 2022
Yayımlanma Tarihi 30 Haziran 2022
Kabul Tarihi 10 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Alaigba, D., Onaiwu, D. O., Olafuyi, O., Mohammed, I. (2022). Upscaling Results from Optimum Salinity Waterflooding at the Core Scale to a 3D Dynamic Grid. International Journal of Engineering and Innovative Research, 4(2), 114-125. https://doi.org/10.47933/ijeir.1098565

Open Journal Systems (BOAI)

This work is licensed under a Creative Commons Attribution 4.0 International License
88x31.png