Araştırma Makalesi
BibTex RIS Kaynak Göster

Impact of an open crack on the output characteristics of a heterojunction solar cell

Yıl 2023, Cilt: 7 Sayı: 4, 95 - 104, 31.12.2023

Öz

Photovoltaic modules experience various forms of degradation throughout their lifecycle, including during operation, transportation, installation and maintenance. Among common degradation modes, cracks are a significant factor contributing to the deterioration of photovoltaic panels. Indeed, the direct link between cracks and the efficiency loss of a photovoltaic module has not definitively been established to date. Therefore, the current study was focused on investigating the influence of the crack depth within a heterojunction solar cell using a finite element model. By conducting steady-state simulations of the PN junction, the study explored crack depths ranging from 0 to 5 µm. The results revealed a linear decrease in the short-circuit current with an increasing crack depth. Moreover, a substantial drop in the open-circuit voltage was observed for crack depths up to 0.25 µm. The overall efficiency of the solar cell was found to decrease markedly from 19.97% to 12.94% when the crack depth reached 5 µm. These findings highlight the importance of understanding and mitigating the impact of cracks on the performance of photovoltaic modules.

Teşekkür

Dear Editor, This paper was presented at www.icSmartGrid.org conference in June 2023 and its initial version was published in the IEEE Xplore database. Thanking you in anticipation. Best regards.

Kaynakça

  • [1] G. Goudelis, P. I. Lazaridis, and M. Dhimish, “A Review of Models for Photovoltaic Crack and Hotspot Prediction,” Energies, vol. 15, no. 12, 2022.
  • [2] A. Ennemri, P.-O. Logerais, M. Balistrou, J. F. Durastanti, and I. Belaidi, “Cracks in silicon photovoltaic modules: a review,” J. Optoelectron. Adv. Mater., vol. 21, no. 1–2, pp. 74–92, 2019.
  • [3] A. Ndiaye, A. Charki, A. Kobi, C.M.F. Kébé, P.A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy, vol. 96, pp. 140–151, 2013.
  • [4] D. C. Jordan, C. Deline, S.R. Kurtz, G.M. Kimball, and M. Anderson, “Robust PV Degradation Methodology and Application,” IEEE J. Photovoltaics, vol. 8, no. 2, pp. 525–531, 2018.
  • [5] V. Sharma and S. S. Chandel, “Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 27, pp. 753–767, 2013.
  • [6] A. Dolara, G. C. Lazaroiu, S. Leva, G. Manzolin, and L. Votta, “Snail Trails and Cell Micro-Cracks impact on PV module maximum power and energy production,” IEEE J. Photovoltaics, vol. 6, no. 5, pp. 1269–1277, 2016.
  • [7] S. Kajari-Schröder, I. Kunze, U. Eitner, and M. Köntges, “Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 11, pp. 3054–3059, 2011.
  • [8] N. Park, J. Jeong, and C. Han, “Estimation of the degradation rate of multi-crystalline silicon photovoltaic module under thermal cycling stress,” Microelectron. Reliab., vol. 54, no. 8, pp. 1562–1566, 2014.
  • [9] W. Tao et al., “Thermo-mechanical stress modeling and experimental investigation on micro-cracks in tilling ribbon photovoltaic modules during lamination and mechanical load test,” Sol. Energy, vol. 249, no. July 2022, pp. 521–531, 2023.
  • [10] A.M. Gabor, H. Seigneur, P.J. Knodle, D.J. Colvin, and K.O. Davis, “Detection and Impact of Cracks Hidden Near Interconnect Wires in Silicon Solar Cells,” IEEE PVSC 50, June 2023.
  • [11] A. Eslami Majd and N.N. Ekere, “Crack initiation and growth in PV module interconnection,” Sol. Energy, vol. 206, pp. 499–507, 2020.
  • [12] M. Köntges, I. Kunze, S. Kajari-Schröder, X. Breitenmoser, and B. Bjørneklett, “The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 4, pp. 1131–1137, 2011.
  • [13] S. Chakraborty, A. K. Haldkar, and N. Manoj Kumar, “Analysis of the hail impacts on the performance of commercially available photovoltaic modules of varying front glass thickness,” Renew. Energy, vol. 203, no. October 2022, pp. 345–356, 2023.
  • [14] R. Meena, H. M. Niyaz, and R. Gupta, “Investigation and Differentiation of Degradation Modes Affecting Series Resistance in Photovoltaic Cells and Modules,” IEEE J. Photovoltaics, vol. 13, no. 2, pp. 283–290, 2023.
  • [15] S.D.V.S.S.V. Siruvuri, P.R. Budarapu, and M. Paggi, “Influence of cracks on fracture strength and electric power losses in Silicon solar cells at high temperatures: deep machine learning and molecular dynamics approach,” Appl. Phys. A Mater. Sci. Process., vol. 129, no. 6, 2023.
  • [16] M. Paggi, M. Corrado, and M. A. Rodriguez, “A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules,” Compos. Struct., vol. 95, pp. 630–638, 2013.
  • [17] A. Sohail, N. Ul Islam, A. Ul Haq, S. Ul Islam, I. Shafi, and J. Park, “Fault detection and computation of power in PV cells under faulty conditions using deep-learning,” Energy Reports, vol. 9, pp. 4325–4336, 2023.
  • [18] R. Subrahmanyan, J. R. Wilcox, and C.-Y. Li, “A damage integral approach to thermal fatigue of solder joints,” IEEE Trans. Components, Hybrids, Manuf. Technol., vol. 12, no. 4, pp. 480–491, 1989.
  • [19] A. Morlier, F. Haase, and K. Marc, “Impact of Cracks in Multicrystalline Silicon Solar Cells on PV Module Power — A Simulation Study Based on Field Data,” pp. 1–7, 2015.
  • [20] W. Fuhs, K. Niemann, and J. Stuke, “Heterojunctions of Amorphous Silicon and Silicon Single Crystals,” AIP Conf. Proceedings, New York, vol. 345, no. 1, 1974.
  • [21] M. Taguchi, A. Terakawa, E. Maruyama, and M. Tanaka, “Obtaining a Higher Voc in HIT Cells,” Prog. Photovoltaics Res. Appl., vol. 13, pp. 481–488, 2005.
  • [22] A.A. Abdallah, M. Kivambe, B. Aïssa, and B.W. Figgis, “Performance of Monofacial and Bifacial Silicon Heterojunction Modules under Desert Conditions and the Impact of PV Soiling,” Sustain., vol. 15, no. 10, 2023.
  • [23] H. Mazouz, P.O. Logerais, A. Belghachi, O. Riou, F. Delaleux, and J.F. Durastanti, “Effect of electron irradiation fluence on the output parameters of GaAs solar cell,” Int. J. Hydrogen Energy, vol. 40, no. 39, pp. 13857–13865, 2015.
  • [24] COMSOL Multiphysics, “Documentation for COMSOL release 3.4.,” MA, USA COMSOL, p. aviable: http://www.comsol.com., 2008.
  • [25] M.I. Echeverria Molina, “Crack Analysis in Silicon Solar Cells,” Master of Science thesis, University of South Florida, 2012.
  • [26] M. Dhimish, V. D’Alessandro, and S. Daliento, “Investigating the Impact of Cracks on Solar Cells Performance: Analysis Based on Nonuniform and Uniform Crack Distributions,” IEEE Trans. Ind. Informatics, vol. 18, no. 3, pp. 1684–1693, 2022.
  • [27] M. Dhimish and Y. Hu, “Rapid testing on the effect of cracks on solar cells output power performance and thermal operation,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022.
  • [28] Sylvain De Vecchi, “Développement de cellules photovoltaïques à hétérojonction de silicium et contacts interdigités en face arrière,” PhD thesis, INSA Lyon, 2013.
  • [29] A. Augusto, P. Balaji, H. Jain, S. Y. Herasimenka, and S. G. Bowden, “Heterojunction solar cells on flexible silicon wafers,” MRS Adv., vol. 1, no. 15, pp. 997–1002, 2016.
  • [30] A. Augusto, K. Tyler, S. Y. Herasimenka, and S. G. Bowden, “Flexible Modules Using <70 μm Thick Silicon Solar Cells,” Energy Procedia, vol. 92, pp. 493–499, 2016.
  • [31] X. Zhang, L. Wang, and Q. Wang, “Typical Failure Causes of Photovoltaic Module,” J. Phys. Conf. Ser., vol. 2520, no. 1, p. 012024, 2023.
  • [32] G. Badran and M. Dhimish, “Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments,” Solar, vol. 3, no. 2, pp. 322–346, 2023.
  • [33] H.A. Raza and G. TamizhMani, “Voltage mapping and local defects identification in solar cells using non-contact method,” Sustain. Energy Technol. Assessments, vol. 57, no. May, p. 103304, 2023.
  • [34] S. Beroual and M. Hrairi, “Electromechanical Impedance Simulation-Based Evaluation of Cracks in Photovoltaic Solar Cells,” Arab. J. Sci. Eng., 2023.
  • [35] S. Prabhakaran, R.A. Uthra, and J. Preetharoselyn, “Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels,” Comput. Syst. Sci. Eng., vol. 44, no. 3, pp. 2683–2700, 2023.
  • [36] R. Al-Mashhadani et al., “Deep learning methods for solar fault detection and classification: A review,” Inf. Sci. Lett., vol. 10, no. 2, pp. 323–331, 2021.
  • [37] A. Ennemri, P. O. Logerais, M. Balistrou, J. F. Durastanti, and I. Belaidi, “Cracks in silicon photovoltaic modules: a review,” J. Optoelectron. Adv. Mater., vol. 21, no. 2, pp. 74–92, 2019.
  • [38] A. Sa’ad, A. C. Nyoungue, and Z. Hajej, “Improved preventive maintenance scheduling for a photovoltaic plant under environmental constraints,” Sustain., vol. 13, no. 18, 2021.
  • [39] S. R. Madeti and S. N. Singh, “Monitoring system for photovoltaic plants: A review,” Renew. Sustain. Energy Rev., vol. 67, pp. 1180–1207, 2017.
Yıl 2023, Cilt: 7 Sayı: 4, 95 - 104, 31.12.2023

Öz

Kaynakça

  • [1] G. Goudelis, P. I. Lazaridis, and M. Dhimish, “A Review of Models for Photovoltaic Crack and Hotspot Prediction,” Energies, vol. 15, no. 12, 2022.
  • [2] A. Ennemri, P.-O. Logerais, M. Balistrou, J. F. Durastanti, and I. Belaidi, “Cracks in silicon photovoltaic modules: a review,” J. Optoelectron. Adv. Mater., vol. 21, no. 1–2, pp. 74–92, 2019.
  • [3] A. Ndiaye, A. Charki, A. Kobi, C.M.F. Kébé, P.A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy, vol. 96, pp. 140–151, 2013.
  • [4] D. C. Jordan, C. Deline, S.R. Kurtz, G.M. Kimball, and M. Anderson, “Robust PV Degradation Methodology and Application,” IEEE J. Photovoltaics, vol. 8, no. 2, pp. 525–531, 2018.
  • [5] V. Sharma and S. S. Chandel, “Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 27, pp. 753–767, 2013.
  • [6] A. Dolara, G. C. Lazaroiu, S. Leva, G. Manzolin, and L. Votta, “Snail Trails and Cell Micro-Cracks impact on PV module maximum power and energy production,” IEEE J. Photovoltaics, vol. 6, no. 5, pp. 1269–1277, 2016.
  • [7] S. Kajari-Schröder, I. Kunze, U. Eitner, and M. Köntges, “Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 11, pp. 3054–3059, 2011.
  • [8] N. Park, J. Jeong, and C. Han, “Estimation of the degradation rate of multi-crystalline silicon photovoltaic module under thermal cycling stress,” Microelectron. Reliab., vol. 54, no. 8, pp. 1562–1566, 2014.
  • [9] W. Tao et al., “Thermo-mechanical stress modeling and experimental investigation on micro-cracks in tilling ribbon photovoltaic modules during lamination and mechanical load test,” Sol. Energy, vol. 249, no. July 2022, pp. 521–531, 2023.
  • [10] A.M. Gabor, H. Seigneur, P.J. Knodle, D.J. Colvin, and K.O. Davis, “Detection and Impact of Cracks Hidden Near Interconnect Wires in Silicon Solar Cells,” IEEE PVSC 50, June 2023.
  • [11] A. Eslami Majd and N.N. Ekere, “Crack initiation and growth in PV module interconnection,” Sol. Energy, vol. 206, pp. 499–507, 2020.
  • [12] M. Köntges, I. Kunze, S. Kajari-Schröder, X. Breitenmoser, and B. Bjørneklett, “The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 4, pp. 1131–1137, 2011.
  • [13] S. Chakraborty, A. K. Haldkar, and N. Manoj Kumar, “Analysis of the hail impacts on the performance of commercially available photovoltaic modules of varying front glass thickness,” Renew. Energy, vol. 203, no. October 2022, pp. 345–356, 2023.
  • [14] R. Meena, H. M. Niyaz, and R. Gupta, “Investigation and Differentiation of Degradation Modes Affecting Series Resistance in Photovoltaic Cells and Modules,” IEEE J. Photovoltaics, vol. 13, no. 2, pp. 283–290, 2023.
  • [15] S.D.V.S.S.V. Siruvuri, P.R. Budarapu, and M. Paggi, “Influence of cracks on fracture strength and electric power losses in Silicon solar cells at high temperatures: deep machine learning and molecular dynamics approach,” Appl. Phys. A Mater. Sci. Process., vol. 129, no. 6, 2023.
  • [16] M. Paggi, M. Corrado, and M. A. Rodriguez, “A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules,” Compos. Struct., vol. 95, pp. 630–638, 2013.
  • [17] A. Sohail, N. Ul Islam, A. Ul Haq, S. Ul Islam, I. Shafi, and J. Park, “Fault detection and computation of power in PV cells under faulty conditions using deep-learning,” Energy Reports, vol. 9, pp. 4325–4336, 2023.
  • [18] R. Subrahmanyan, J. R. Wilcox, and C.-Y. Li, “A damage integral approach to thermal fatigue of solder joints,” IEEE Trans. Components, Hybrids, Manuf. Technol., vol. 12, no. 4, pp. 480–491, 1989.
  • [19] A. Morlier, F. Haase, and K. Marc, “Impact of Cracks in Multicrystalline Silicon Solar Cells on PV Module Power — A Simulation Study Based on Field Data,” pp. 1–7, 2015.
  • [20] W. Fuhs, K. Niemann, and J. Stuke, “Heterojunctions of Amorphous Silicon and Silicon Single Crystals,” AIP Conf. Proceedings, New York, vol. 345, no. 1, 1974.
  • [21] M. Taguchi, A. Terakawa, E. Maruyama, and M. Tanaka, “Obtaining a Higher Voc in HIT Cells,” Prog. Photovoltaics Res. Appl., vol. 13, pp. 481–488, 2005.
  • [22] A.A. Abdallah, M. Kivambe, B. Aïssa, and B.W. Figgis, “Performance of Monofacial and Bifacial Silicon Heterojunction Modules under Desert Conditions and the Impact of PV Soiling,” Sustain., vol. 15, no. 10, 2023.
  • [23] H. Mazouz, P.O. Logerais, A. Belghachi, O. Riou, F. Delaleux, and J.F. Durastanti, “Effect of electron irradiation fluence on the output parameters of GaAs solar cell,” Int. J. Hydrogen Energy, vol. 40, no. 39, pp. 13857–13865, 2015.
  • [24] COMSOL Multiphysics, “Documentation for COMSOL release 3.4.,” MA, USA COMSOL, p. aviable: http://www.comsol.com., 2008.
  • [25] M.I. Echeverria Molina, “Crack Analysis in Silicon Solar Cells,” Master of Science thesis, University of South Florida, 2012.
  • [26] M. Dhimish, V. D’Alessandro, and S. Daliento, “Investigating the Impact of Cracks on Solar Cells Performance: Analysis Based on Nonuniform and Uniform Crack Distributions,” IEEE Trans. Ind. Informatics, vol. 18, no. 3, pp. 1684–1693, 2022.
  • [27] M. Dhimish and Y. Hu, “Rapid testing on the effect of cracks on solar cells output power performance and thermal operation,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022.
  • [28] Sylvain De Vecchi, “Développement de cellules photovoltaïques à hétérojonction de silicium et contacts interdigités en face arrière,” PhD thesis, INSA Lyon, 2013.
  • [29] A. Augusto, P. Balaji, H. Jain, S. Y. Herasimenka, and S. G. Bowden, “Heterojunction solar cells on flexible silicon wafers,” MRS Adv., vol. 1, no. 15, pp. 997–1002, 2016.
  • [30] A. Augusto, K. Tyler, S. Y. Herasimenka, and S. G. Bowden, “Flexible Modules Using <70 μm Thick Silicon Solar Cells,” Energy Procedia, vol. 92, pp. 493–499, 2016.
  • [31] X. Zhang, L. Wang, and Q. Wang, “Typical Failure Causes of Photovoltaic Module,” J. Phys. Conf. Ser., vol. 2520, no. 1, p. 012024, 2023.
  • [32] G. Badran and M. Dhimish, “Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments,” Solar, vol. 3, no. 2, pp. 322–346, 2023.
  • [33] H.A. Raza and G. TamizhMani, “Voltage mapping and local defects identification in solar cells using non-contact method,” Sustain. Energy Technol. Assessments, vol. 57, no. May, p. 103304, 2023.
  • [34] S. Beroual and M. Hrairi, “Electromechanical Impedance Simulation-Based Evaluation of Cracks in Photovoltaic Solar Cells,” Arab. J. Sci. Eng., 2023.
  • [35] S. Prabhakaran, R.A. Uthra, and J. Preetharoselyn, “Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels,” Comput. Syst. Sci. Eng., vol. 44, no. 3, pp. 2683–2700, 2023.
  • [36] R. Al-Mashhadani et al., “Deep learning methods for solar fault detection and classification: A review,” Inf. Sci. Lett., vol. 10, no. 2, pp. 323–331, 2021.
  • [37] A. Ennemri, P. O. Logerais, M. Balistrou, J. F. Durastanti, and I. Belaidi, “Cracks in silicon photovoltaic modules: a review,” J. Optoelectron. Adv. Mater., vol. 21, no. 2, pp. 74–92, 2019.
  • [38] A. Sa’ad, A. C. Nyoungue, and Z. Hajej, “Improved preventive maintenance scheduling for a photovoltaic plant under environmental constraints,” Sustain., vol. 13, no. 18, 2021.
  • [39] S. R. Madeti and S. N. Singh, “Monitoring system for photovoltaic plants: A review,” Renew. Sustain. Energy Rev., vol. 67, pp. 1180–1207, 2017.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotovoltaik Cihazlar (Güneş Pilleri)
Bölüm Articles
Yazarlar

Amina Ennemrı 0000-0003-0385-7328

Halima Mazouz 0000-0002-4558-0059

Ali Khouzam 0009-0003-0026-2457

Pierre-olivier Logeraıs 0000-0003-3359-4792

Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 4

Kaynak Göster

IEEE A. Ennemrı, H. Mazouz, A. Khouzam, ve P.-o. Logeraıs, “Impact of an open crack on the output characteristics of a heterojunction solar cell”, IJESA, c. 7, sy. 4, ss. 95–104, 2023.

ISSN 2548-1185
e-ISSN 2587-2176
Period: Quarterly
Founded: 2016
Publisher: Nisantasi University
e-mail:ilhcol@gmail.com