Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 1, 1 - 11, 01.06.2022
https://doi.org/10.47947/ijnls.1031087

Abstract

References

  • Acosta-Dacal, A., Rial-Berriel, C., Diaz-Diaz, R., Bernal-Suarez, M. M., & Luzardo, O. P. (2021). Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Science of the Total Environment, 753, 142015. https://doi.org/10.1016/j.scitotenv.2020.142015
  • Aparicio, R., & Harwood J. (2013). Handbook of Olive Oil Analysis and Properties. Springer New York.
  • Barrek, S., Paisse, O., & Grenier-Loustalot, M.F. (2003). Determination of residual pesticides in olive oil by GC-MS and HPLC-MS after extraction by size-exclusion chromatography. Analytical and Bioanalytical Chemistry, 376(3), 355-359. https://doi.org/10.1007/s00216-003-1917-y
  • Benavente-García, O., Castillo, J., Lorente, J., Ortuño, A., & Del Rio, J. A. (2000). Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 68, 457–462. https://doi.org/10.1016/S0308-8146(99)00221-6
  • Çetin, Ö., Güloğlu U., Hakan, M., Kaya, H., Mete, N., & Savran, H. (2015). Türkiye Zeytin Çeşit Kataloğu. İzmir, Gıda Tarım ve Hayvancılık Bakanlığı: Zeytincilik Araştırma Enstitüsü Müdürlüğü.
  • Demircan, V., & Yılmaz, H. (2005). Isparta ili elma üretiminde tarımsal ilaç kullanımının çevresel duyarlılık ve ekonomik açıdan analizi. Ekoloji, 14(57), 15-25.
  • EC, 2020 EC EU Pesticides Database. 2020 European Commission.
  • El, S. N., & Karakaya, S. (2009). Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition Reviews, 67(11), 632–638. https://doi.org/10.1111/j.1753-4887.2009.00248.x
  • Ferreira, I. C. F. R., Barros, L., Soares, M. E., Bastos, M. L., & Pereira, J. A. (2007). Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chemistry, 103, 188–195. https://doi.org/10.1016/j.foodchem.2006.08.006
  • Giacometti, J., Bursac Kovacevic, D., Putnik, P., Gabric, D., Bilušic, T., Krešic, G., Stulic, V., Barba, F. J., Chemat, F., & Barbosa-Cánovas, G. (2018). Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International, 113, 245–262. https://doi.org/10.1016/j.foodres.2018.06.036
  • González-Curbelo, M. Á., Socas-Rodríguez, B., Herrera-Herrera, A. V., González-Sálamo, J., Hernández-Borges, J., & Rodríguez-Delgado, M. Á. (2015). Evolution and applications of the QuEChERS method. TrAC Trends in Analytical Chemistry, 71, 169-185. https://doi.org/10.1016/j.trac.2015.04.012
  • Hasibur, R., Mehboob, A., Fahim, A., Manpreet, K., Kanchan, B., & Sheikh, R. (2006). The modulatory effect of deltamethrin on antioxidants in mice. Clinica Chimica Acta, 369(1), 61-65. https://doi.org/10.1016/j.cca.2006.01.010
  • Lama-Muñoz, A., del Mar Contreras, M., Espínola, F., Moya, M., de Torres, A., Romero, I., & Castro, E. (2019). Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chemistry, 293, 161–168. https://doi.org/10.1016/j.foodchem.2019.04.075
  • Lockyer, S., Rowland, I., Spencer, J. P. E., Yaqoob, P., & Stonehouse, W. (2016). Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial. European Journal of Nutrition, 56, 1421–1432. https://doi.org/10.1007/s00394-016-1188-y
  • Lopez, S. H., Dias, J., & Kok, A. (2020). Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control, 115, 107289. https://doi.org/10.1016/j.foodcont.2020.107289
  • Pena, A., Ruano, F., & Mingorance, M. D. (2006). Ultrasound-assisted extraction of pesticides from olive branches: a multifactorial approach to method development. Analytical and Bioanalytical Chemistry, 385, 918-925. https://doi.org/10.1007/s00216-006-0449-7
  • PFA 1954. Prevention of Food Adulteration Act 1954. Act No. 37 with Prevention of Food Adulteration Ruels 1955 and Notification and Commodity Index (16th ed.). Lucknow: Eastern Book.
  • Pham, H. C., Navarro-Delmasure, C., & Pham, H. C. (1984). Toxicological studies of deltamethrin. International Journal of Tissue Reactions, 6(2), 127-133. PMID: 6735621.
  • Putnik, P., Lorenzo, J., Barba, F., Roohinejad, S., Režek Jambrak, A., Granato, D., Montesano, D., & Bursa´c Kovaˇcevi´c, D. (2018). Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods, 7, 106. https://doi.org/10.3390/foods7070106
  • Radovanović, T. B., Nasia, M., Krizmanić, I. I., Prokić, M. D., Gavrić, J. P., Despotović, S. G., Gavrilović, B. R., Borković-Mitić, S., Pavlović, S. Z., & Saičić, Z. S. (2017). Sublethal effects of the pyrethroid insecticide deltamethrin on oxidative stress parameters in green toad (Bufotes viridis L.). Environmental Toxicology and Chemistry, 36(10), 2814-2822. https://doi.org/10.1002/etc.3849
  • Rebora, M., Salerno, G., Piersanti, S., Gorb, E., & Gorb, S. (2020). Role of fruit epicuticular waxes in preventing bactrocera oleae (Diptera: Tephritidae) attachment in different cultivars of Olea europaea. Insects, 11, 189-206. https://doi.org/10.3390/insects11030189
  • Sahyar, B.Y., Kaplan, M., Ozsoz, M., Celik, E., & Otles, S. (2019). Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry, 130, 107327. https://doi.org/10.1016/j.bioelechem.2019.107327
  • Sarbishegi, M., Gorgich, E.A.C., Khajavi, O., Komeili, G., & Salimi, S. (2018). The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat. Metab Brain Dis, 33, 79-88. https://doi.org/10.1007/s11011-017-0131-0
  • Tognaccini, L., Ricci, M., Gellini, C., Feis, A., Smulevich, G., & Becucci, M. (2019). Surface enhanced raman spectroscopy for ın-field detection of pesticides: a test on dimethoate residues in water and on olive leaves. Molecules, 24, 292-302. https://doi.org/10.3390/molecules24020292
  • Turkish Food Codex Regulation. Turkish Official Newspaper. 19 February 2020. Number: 31044, 2.
  • Turkmenoglu, Z., Kaya, S., & Gündoğdu, M. (1974). Ege Bölgesi bağlarında zarar yapan bağ kanseri (Agrobacterium tumefaciens)‘ne karşı uygun mücadele metodunun tespiti. Bitki Koruma Bülteni, 14(4), 235-248.
  • Uguz, S., & Uysal, N. (2021). Classification of olive leaf diseases using deep convolutional neural networks. Neural Computing and Applications, 33, 4133-4149.
  • Wang, B., Shen, S., Qu, J., Xu, Z., Feng, S., Chen, T., & Ding, C. (2021). Optimizing total phenolic and oleuropein of Chinese Olive (Olea europaea) leaves for enhancement of the phenols content and antioxidant activity. Agronomy, 11, 686. https://doi.org/10.3390/agronomy11040686
  • Zuntar, I., Putnik, P., Kovacevic, D. B., Nutrizio, M., Supljika, F., Poljanec, A., Dubrovic, I., Barba, F. J., & Jambrak, A. R. (2019). Phenolic and antioxidant analysis of olive leaves extracts (Olea europaea L.) obtained by high voltage electrical discharges (HVED). Foods, 8(7), 248. https://doi.or/g10.3390/foods8070248

Detection of Pesticide Residues in Olive Leaves From İzmir, Turkey

Year 2022, Volume: 6 Issue: 1, 1 - 11, 01.06.2022
https://doi.org/10.47947/ijnls.1031087

Abstract

Turkey, especially the Aegean region, has very suitable lands for olive cultivation. In this work, the olive leaves extracts were treated with pesticide solution and also Bordeaux mixture. Olive varieties in their natural environment were collected after 1 year, and the amount of pesticides they contained was measured. As a result of the QuEChERS method using LC-MS/MS and GC-MS/MS techniques, no pesticide residues were detected in any samples. The pesticide residues determined in the samples used in this study do not exceed the maximum limits specified in the Turkish Food Codex and the European Commission. There are no quantifiable residues of abamectin, acetamiprid, azoxystrobin, difenoconazole, diflubenzuron, diflufenican, dimethoate, dodine, emamectin benzoate, indoxacarb, lufenuron, malathion, novaluron, phosmet, pyriproxyfen, spinosad, thiacloprid, and triflumuron were detected in any olive samples by using LC-MS/MS method. Also, alpha-cypermethrin, beta-cyfluthrin, cyflutrin, deltamethrin, and lambda-cyhalothrin were not detected in samples by GC-MS/MS method. Accordingly, they agree with the results found. The results obtained showed that the pesticide solution used protected the olives from pests and did not have a harmful effect on the olives.

References

  • Acosta-Dacal, A., Rial-Berriel, C., Diaz-Diaz, R., Bernal-Suarez, M. M., & Luzardo, O. P. (2021). Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Science of the Total Environment, 753, 142015. https://doi.org/10.1016/j.scitotenv.2020.142015
  • Aparicio, R., & Harwood J. (2013). Handbook of Olive Oil Analysis and Properties. Springer New York.
  • Barrek, S., Paisse, O., & Grenier-Loustalot, M.F. (2003). Determination of residual pesticides in olive oil by GC-MS and HPLC-MS after extraction by size-exclusion chromatography. Analytical and Bioanalytical Chemistry, 376(3), 355-359. https://doi.org/10.1007/s00216-003-1917-y
  • Benavente-García, O., Castillo, J., Lorente, J., Ortuño, A., & Del Rio, J. A. (2000). Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 68, 457–462. https://doi.org/10.1016/S0308-8146(99)00221-6
  • Çetin, Ö., Güloğlu U., Hakan, M., Kaya, H., Mete, N., & Savran, H. (2015). Türkiye Zeytin Çeşit Kataloğu. İzmir, Gıda Tarım ve Hayvancılık Bakanlığı: Zeytincilik Araştırma Enstitüsü Müdürlüğü.
  • Demircan, V., & Yılmaz, H. (2005). Isparta ili elma üretiminde tarımsal ilaç kullanımının çevresel duyarlılık ve ekonomik açıdan analizi. Ekoloji, 14(57), 15-25.
  • EC, 2020 EC EU Pesticides Database. 2020 European Commission.
  • El, S. N., & Karakaya, S. (2009). Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition Reviews, 67(11), 632–638. https://doi.org/10.1111/j.1753-4887.2009.00248.x
  • Ferreira, I. C. F. R., Barros, L., Soares, M. E., Bastos, M. L., & Pereira, J. A. (2007). Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chemistry, 103, 188–195. https://doi.org/10.1016/j.foodchem.2006.08.006
  • Giacometti, J., Bursac Kovacevic, D., Putnik, P., Gabric, D., Bilušic, T., Krešic, G., Stulic, V., Barba, F. J., Chemat, F., & Barbosa-Cánovas, G. (2018). Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International, 113, 245–262. https://doi.org/10.1016/j.foodres.2018.06.036
  • González-Curbelo, M. Á., Socas-Rodríguez, B., Herrera-Herrera, A. V., González-Sálamo, J., Hernández-Borges, J., & Rodríguez-Delgado, M. Á. (2015). Evolution and applications of the QuEChERS method. TrAC Trends in Analytical Chemistry, 71, 169-185. https://doi.org/10.1016/j.trac.2015.04.012
  • Hasibur, R., Mehboob, A., Fahim, A., Manpreet, K., Kanchan, B., & Sheikh, R. (2006). The modulatory effect of deltamethrin on antioxidants in mice. Clinica Chimica Acta, 369(1), 61-65. https://doi.org/10.1016/j.cca.2006.01.010
  • Lama-Muñoz, A., del Mar Contreras, M., Espínola, F., Moya, M., de Torres, A., Romero, I., & Castro, E. (2019). Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chemistry, 293, 161–168. https://doi.org/10.1016/j.foodchem.2019.04.075
  • Lockyer, S., Rowland, I., Spencer, J. P. E., Yaqoob, P., & Stonehouse, W. (2016). Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial. European Journal of Nutrition, 56, 1421–1432. https://doi.org/10.1007/s00394-016-1188-y
  • Lopez, S. H., Dias, J., & Kok, A. (2020). Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control, 115, 107289. https://doi.org/10.1016/j.foodcont.2020.107289
  • Pena, A., Ruano, F., & Mingorance, M. D. (2006). Ultrasound-assisted extraction of pesticides from olive branches: a multifactorial approach to method development. Analytical and Bioanalytical Chemistry, 385, 918-925. https://doi.org/10.1007/s00216-006-0449-7
  • PFA 1954. Prevention of Food Adulteration Act 1954. Act No. 37 with Prevention of Food Adulteration Ruels 1955 and Notification and Commodity Index (16th ed.). Lucknow: Eastern Book.
  • Pham, H. C., Navarro-Delmasure, C., & Pham, H. C. (1984). Toxicological studies of deltamethrin. International Journal of Tissue Reactions, 6(2), 127-133. PMID: 6735621.
  • Putnik, P., Lorenzo, J., Barba, F., Roohinejad, S., Režek Jambrak, A., Granato, D., Montesano, D., & Bursa´c Kovaˇcevi´c, D. (2018). Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods, 7, 106. https://doi.org/10.3390/foods7070106
  • Radovanović, T. B., Nasia, M., Krizmanić, I. I., Prokić, M. D., Gavrić, J. P., Despotović, S. G., Gavrilović, B. R., Borković-Mitić, S., Pavlović, S. Z., & Saičić, Z. S. (2017). Sublethal effects of the pyrethroid insecticide deltamethrin on oxidative stress parameters in green toad (Bufotes viridis L.). Environmental Toxicology and Chemistry, 36(10), 2814-2822. https://doi.org/10.1002/etc.3849
  • Rebora, M., Salerno, G., Piersanti, S., Gorb, E., & Gorb, S. (2020). Role of fruit epicuticular waxes in preventing bactrocera oleae (Diptera: Tephritidae) attachment in different cultivars of Olea europaea. Insects, 11, 189-206. https://doi.org/10.3390/insects11030189
  • Sahyar, B.Y., Kaplan, M., Ozsoz, M., Celik, E., & Otles, S. (2019). Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry, 130, 107327. https://doi.org/10.1016/j.bioelechem.2019.107327
  • Sarbishegi, M., Gorgich, E.A.C., Khajavi, O., Komeili, G., & Salimi, S. (2018). The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat. Metab Brain Dis, 33, 79-88. https://doi.org/10.1007/s11011-017-0131-0
  • Tognaccini, L., Ricci, M., Gellini, C., Feis, A., Smulevich, G., & Becucci, M. (2019). Surface enhanced raman spectroscopy for ın-field detection of pesticides: a test on dimethoate residues in water and on olive leaves. Molecules, 24, 292-302. https://doi.org/10.3390/molecules24020292
  • Turkish Food Codex Regulation. Turkish Official Newspaper. 19 February 2020. Number: 31044, 2.
  • Turkmenoglu, Z., Kaya, S., & Gündoğdu, M. (1974). Ege Bölgesi bağlarında zarar yapan bağ kanseri (Agrobacterium tumefaciens)‘ne karşı uygun mücadele metodunun tespiti. Bitki Koruma Bülteni, 14(4), 235-248.
  • Uguz, S., & Uysal, N. (2021). Classification of olive leaf diseases using deep convolutional neural networks. Neural Computing and Applications, 33, 4133-4149.
  • Wang, B., Shen, S., Qu, J., Xu, Z., Feng, S., Chen, T., & Ding, C. (2021). Optimizing total phenolic and oleuropein of Chinese Olive (Olea europaea) leaves for enhancement of the phenols content and antioxidant activity. Agronomy, 11, 686. https://doi.org/10.3390/agronomy11040686
  • Zuntar, I., Putnik, P., Kovacevic, D. B., Nutrizio, M., Supljika, F., Poljanec, A., Dubrovic, I., Barba, F. J., & Jambrak, A. R. (2019). Phenolic and antioxidant analysis of olive leaves extracts (Olea europaea L.) obtained by high voltage electrical discharges (HVED). Foods, 8(7), 248. https://doi.or/g10.3390/foods8070248
There are 29 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research articles
Authors

Pelin Taştan 0000-0003-0913-5369

Özge Taştan 0000-0001-7553-4005

Buket Yalcin Sahyar This is me 0000-0002-2034-309X

Early Pub Date January 16, 2022
Publication Date June 1, 2022
Submission Date December 6, 2021
Acceptance Date January 7, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Taştan, P., Taştan, Ö., & Yalcin Sahyar, B. (2022). Detection of Pesticide Residues in Olive Leaves From İzmir, Turkey. International Journal of Nature and Life Sciences, 6(1), 1-11. https://doi.org/10.47947/ijnls.1031087