Although the widespread
introduction of numerical tools and the CFD models have improved the
design methodology of thermoacoustic coolers and eased optimization
of such units, high computational costs vitally limit their
application in parametric analyses of thermoacoustic devices. Thus,
experimental investigation remains essential field of research,
considering design of such units. In the paper, the design and
construction of an experimental setup, dedicated to perform an
extensive multiparametric analyses on compact thermoacoustic devices
with varying characteristic parameters, is discussed in detail. A
complete design path, beginning with general consideration, with
further detailed dimensioning and selection of market-available
parts, ending with installation of control and data acquisition
equipment, is described. Initial testing of the device, performed
both computationally at the design stage and experimentally after the
final setup assembling, is discussed as well. The results of the
tests demonstrated ability to observe the variability in the
operational parameters of the cooler following change in number of
environmental and constructional parameters. The data acquired
indicated vital importance of the stack porosity and frequency of
the acoustic wave on performance of the thermoacoustic device, which
corresponds to the data presented in the literature.
Authors would like to thank Dr. Sebastian Michalski from Cranfield University for support during the initial design considerations.
References
Tijani M.E.H., Zeegers J.C.H., de Waele A.T.A.M.: “Design of thermoacoustic refrigerators”, Cryogenics 42, 49-57, 2002
Swift G.W.: “Thermoacoustic Natural Gas Liquefier”, US DOE Natural Gas Conference Proceedings, Houston, 1997
Minner B.L., Braun J.E., Mongeau L.: “Optimizing the Design of a Thermoacoustic Refrigerator”, International Refrigeration and Air Conditioning Conference 1996, 343.
Russel D.A., Weibull P.: “Tabletop thermoacoustic refrigerator for demonstrations”, Am J Phys 70, 1231, 2002
Berson A., Michard M., Blanc-Benon P.: “Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry”, Heat Mass Transfer 44, 1015-1023, 2008
Rossing T.D. (ed.): Springer Handbook of Acoustics, Springer Science+Business Media LLC, New York 2007
Grzywnowicz K., Remiorz L.: “Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon”, in ECOS 2019. Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, pp. 227-238, 2019
Poese M.E., Smitth R.W., Garrett S.L., van Gerwen R., Gosselin P.: “Thermoacoustic refrigeration for ice cream sales”, Proceedings of the 6th IIR Gustav Lorentzen Conference, Glasgow, 2004
Kobayashi Y. et al.: “A unified stability analysis method for spontaneous oscillation conditions in thermoacoustic systems via measured frequency response data with application to standing- and traveling-wave engines”, J Sound Vib 456, 86-103, 2019
Rulik S. et al.: “Influence of duct parameters on the acoustic wave generation”, Int J Numer Method H, 2019, DOI: 10.1108/HFF-10-2018-0611
Harikumar G. et al.: “Thermoacoustic energy conversion in a square duct”, Enrgy Proced 158, 1811-1816, 2019
Kikuchi R et al.: “Measurement of performance of thermoacosutic heat pump in a -3 to 160 °C temperature range”, Jpn J Appl Phys 54, 117101, 2015
Tijani M.E.H., Spoelstra S.: High temperature thermoacoustic heat pump, Energy Research Centre of the Netherlands, 2012
Ke H.-B., Liu Y.-W., He Y.-L., Wang Y., Huang J.: “Numerical simulation and parameter optimization of thermo-acoustic refrigerator driven at large amplitude”, Cryogenics 50, 28-35, 2010
Symko O.G., Abdel-Rahman E., Kwon Y.S., Emmi M., Behunin R.: “Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics”, Microelec J 35, 185-191, 2004
Nowak I. et al: “Analytical and numerical approach in the simple modelling of thermoacoustic engines”, Int J Heat Mass Tran 77, 369-376, 2014
Zhu S.I., Yu G.Y., Dai W., Luo E.C., Wu Z.H., Zhang X.D.: “Characterization of a 300 Hz thermoacoustically-driven pulse tube cooler”, Cryogenics 49, 51-54, 2009
Hariharan N.M., Sivashanmugam P., Kasthurirengan S.: “Influence of stack geometry and resonator length on the performance of thermoacoustic engine”, Appl Acoust 73, 1052-1058, 2012
Spoelstra S.: THermoAcoustic Technology for Energy Applications. Final Report, Energy research Centre of the Netherlands, Petten, 2012
Lotton P., Blanc-Benon P., Bruneau M., Gusev V., Duffourd S., Mironov M., Poignand G.: “Transient temperature profile inside thermoacoustic refrigerators”, Int J Heat Mass Tran 52, 4986–4996, 2009
Michalski S., Grzywnowicz K., Remiorz L.: „Thermoacoustic cooling phenomenon - test stand conception”, Rynek Energii 133, 73-79, 2017
Alcock A.C., Tartibu L.K., Jen T.C.: “Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator”, Int J Refrig 94, 71-86, 2018
Rahman A.A., Zhang X.: “Single-objective optimization for stack unit of standing wave thermoacoustic refrigerator through fruit fly optimization algorithm”, Int J Refrig 98, 35-41, 2019
Yehui P., Heying F., Xiaoan M.: “Optimization of standing-wave thermoacoustic refrigerator stack using genetic algorithm”, Int J Refrig 92, 246-255, 2018
Kuzuu K., Hasegawa S.: “Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core”, Int J Heat Mass Tran 108, 1591-1601, 2017
Qiu L., Wang B., Sun D., Liu Y., Steiner T.: “A thermoacoustic engine capable of utilizing multi-temperature heat sources”, Energ Convers Manage 50, 3187-3192, 2009
Tijani M.E.H., Zeegers J.C.H., de Waele A.T.A.M.: “Design of thermoacoustic refrigerators”, Cryogenics 42, 49-57, 2002
Swift G.W.: “Thermoacoustic Natural Gas Liquefier”, US DOE Natural Gas Conference Proceedings, Houston, 1997
Minner B.L., Braun J.E., Mongeau L.: “Optimizing the Design of a Thermoacoustic Refrigerator”, International Refrigeration and Air Conditioning Conference 1996, 343.
Russel D.A., Weibull P.: “Tabletop thermoacoustic refrigerator for demonstrations”, Am J Phys 70, 1231, 2002
Berson A., Michard M., Blanc-Benon P.: “Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry”, Heat Mass Transfer 44, 1015-1023, 2008
Rossing T.D. (ed.): Springer Handbook of Acoustics, Springer Science+Business Media LLC, New York 2007
Grzywnowicz K., Remiorz L.: “Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon”, in ECOS 2019. Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, pp. 227-238, 2019
Poese M.E., Smitth R.W., Garrett S.L., van Gerwen R., Gosselin P.: “Thermoacoustic refrigeration for ice cream sales”, Proceedings of the 6th IIR Gustav Lorentzen Conference, Glasgow, 2004
Kobayashi Y. et al.: “A unified stability analysis method for spontaneous oscillation conditions in thermoacoustic systems via measured frequency response data with application to standing- and traveling-wave engines”, J Sound Vib 456, 86-103, 2019
Rulik S. et al.: “Influence of duct parameters on the acoustic wave generation”, Int J Numer Method H, 2019, DOI: 10.1108/HFF-10-2018-0611
Harikumar G. et al.: “Thermoacoustic energy conversion in a square duct”, Enrgy Proced 158, 1811-1816, 2019
Kikuchi R et al.: “Measurement of performance of thermoacosutic heat pump in a -3 to 160 °C temperature range”, Jpn J Appl Phys 54, 117101, 2015
Tijani M.E.H., Spoelstra S.: High temperature thermoacoustic heat pump, Energy Research Centre of the Netherlands, 2012
Ke H.-B., Liu Y.-W., He Y.-L., Wang Y., Huang J.: “Numerical simulation and parameter optimization of thermo-acoustic refrigerator driven at large amplitude”, Cryogenics 50, 28-35, 2010
Symko O.G., Abdel-Rahman E., Kwon Y.S., Emmi M., Behunin R.: “Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics”, Microelec J 35, 185-191, 2004
Nowak I. et al: “Analytical and numerical approach in the simple modelling of thermoacoustic engines”, Int J Heat Mass Tran 77, 369-376, 2014
Zhu S.I., Yu G.Y., Dai W., Luo E.C., Wu Z.H., Zhang X.D.: “Characterization of a 300 Hz thermoacoustically-driven pulse tube cooler”, Cryogenics 49, 51-54, 2009
Hariharan N.M., Sivashanmugam P., Kasthurirengan S.: “Influence of stack geometry and resonator length on the performance of thermoacoustic engine”, Appl Acoust 73, 1052-1058, 2012
Spoelstra S.: THermoAcoustic Technology for Energy Applications. Final Report, Energy research Centre of the Netherlands, Petten, 2012
Lotton P., Blanc-Benon P., Bruneau M., Gusev V., Duffourd S., Mironov M., Poignand G.: “Transient temperature profile inside thermoacoustic refrigerators”, Int J Heat Mass Tran 52, 4986–4996, 2009
Michalski S., Grzywnowicz K., Remiorz L.: „Thermoacoustic cooling phenomenon - test stand conception”, Rynek Energii 133, 73-79, 2017
Alcock A.C., Tartibu L.K., Jen T.C.: “Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator”, Int J Refrig 94, 71-86, 2018
Rahman A.A., Zhang X.: “Single-objective optimization for stack unit of standing wave thermoacoustic refrigerator through fruit fly optimization algorithm”, Int J Refrig 98, 35-41, 2019
Yehui P., Heying F., Xiaoan M.: “Optimization of standing-wave thermoacoustic refrigerator stack using genetic algorithm”, Int J Refrig 92, 246-255, 2018
Kuzuu K., Hasegawa S.: “Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core”, Int J Heat Mass Tran 108, 1591-1601, 2017
Qiu L., Wang B., Sun D., Liu Y., Steiner T.: “A thermoacoustic engine capable of utilizing multi-temperature heat sources”, Energ Convers Manage 50, 3187-3192, 2009
Grzywnowicz, K., & Remiorz, L. (2019). Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon. International Journal of Thermodynamics, 22(4), 193-201. https://doi.org/10.5541/ijot.639634
AMA
Grzywnowicz K, Remiorz L. Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon. International Journal of Thermodynamics. November 2019;22(4):193-201. doi:10.5541/ijot.639634
Chicago
Grzywnowicz, Krzysztof, and Leszek Remiorz. “Design of Simple Refrigerating Device for Multiparametric Analysis of the Thermoacoustic Cooling Phenomenon”. International Journal of Thermodynamics 22, no. 4 (November 2019): 193-201. https://doi.org/10.5541/ijot.639634.
EndNote
Grzywnowicz K, Remiorz L (November 1, 2019) Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon. International Journal of Thermodynamics 22 4 193–201.
IEEE
K. Grzywnowicz and L. Remiorz, “Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon”, International Journal of Thermodynamics, vol. 22, no. 4, pp. 193–201, 2019, doi: 10.5541/ijot.639634.
ISNAD
Grzywnowicz, Krzysztof - Remiorz, Leszek. “Design of Simple Refrigerating Device for Multiparametric Analysis of the Thermoacoustic Cooling Phenomenon”. International Journal of Thermodynamics 22/4 (November 2019), 193-201. https://doi.org/10.5541/ijot.639634.
JAMA
Grzywnowicz K, Remiorz L. Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon. International Journal of Thermodynamics. 2019;22:193–201.
MLA
Grzywnowicz, Krzysztof and Leszek Remiorz. “Design of Simple Refrigerating Device for Multiparametric Analysis of the Thermoacoustic Cooling Phenomenon”. International Journal of Thermodynamics, vol. 22, no. 4, 2019, pp. 193-01, doi:10.5541/ijot.639634.
Vancouver
Grzywnowicz K, Remiorz L. Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon. International Journal of Thermodynamics. 2019;22(4):193-201.