Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine

Yıl 2019, Cilt 22, Sayı 3, 149 - 157, 01.09.2019
https://doi.org/10.5541/ijot.499892

Öz

The hydrous ethanol combined with the turbocharged engine with exhaust gas recirculation (EGR) has been investigated with a phenomenological simulation model. This paper analyzes the influence of the low pressure and high pressure cooled EGR, the intercooler and the amount of recirculated gases, as they affect the performance parameters in a spark-ignited ethanol-fueled engine. Using a phenomenological model developed in Matlab®, the behavior of the pressure and temperature curves is analyzed considering the variation of the crank angle, the formation of NOx, and the tendency for knocking. The fuel analyzed is hydrous ethanol (E95h - 5%water by volume), which is widely used in Brazil. The proposed technique showed an increased power using the intercooler (IC) while avoiding knocking. This study showed that the use of a cooled EGR and turbocharged SI results in increased power, while also reducing NOx formation, and preventing or reducing engine knocking. In some engines, the low pressure cooled EGR is better than high pressure, but this can be different for another engine. The model helps to find the best or more adequately equipped for each model of engine.

Kaynakça

  • Reference 1 [1] C. Park, Y. Choi, C. Kim, S. Oh, G. Lim, and Y. Moriyoshi, “Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas,” Fuel, vol. 89, no. 8, pp. 2118–2125, 2010.Reference 2[2] A. Boretti, “Analysis of desing of pure ethanol engines,” SAE 2010-01-1453, pp. 1–13, 2010.Reference 3[3] L. Bromberg and D. R. Cohn, “Effective Octane and Efficiency advantages of direct injection alcohol engines,” LFEE 2008-01, 2008.Reference 4 [4] S. M. Sarathy, P. Oßwald, N. Hansen, and K. Kohse-Höinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci., vol. 44, pp. 40–102, Oct. 2014.Reference 5 [5] C. Cuevas, D. Makaire, and P. Ngendakumana, “Thermo-hydraulic characterization of an automotive intercooler for a low pressure EGR application,” Appl. Therm. Eng., vol. 31, no. 14–15, pp. 2474–2484, 2011.Reference 6[6] A. K. Agrawal, S. K. Singh, S. Sinha, and M. K. Shukla, Effect of EGR on the Exhaust Gas Temperature and Exhaust Opacity in Compression Ignition Engines Using Jatropha Oil as Fuel, Parte 3., vol. 29. India: Springer, 2004.Reference 7[7] N. Ghassembaglou and L. Torkaman, “Efficient design of exhaust gas cooler in cold EGR equipped dies el engine,” Alexandria Eng. J., vol. 55, no. 2, pp. 769–778, 2016.Reference 8[8] L. Chen, T. Li, T. Yin, and B. Zheng, “A predictive model for knock onset in spark-ignition engines with cooled EGR,” Energy Convers. Manag., vol. 87, pp. 946–955, 2014.Reference 9[9] L. Bromberg, D. R. Cohn, and J. B. Heywood, “Calculations of knock suppression in highly turbocharged gasoline/ethanol engines using direct ethanol injection,” Lfee, pp. 1–17, 2006.Reference 10[10] L. Chen, P. Sun, S. Ding, and S. Yang, “Miscibility of ternary systems containing kerosene-based surrogate fuel and hydrous ethanol: Experimental data+thermodynamic modeling,” Fluid Phase Equilibria, vol. 379, Elsevier B.V., pp. 1–9, Oct-2014.Reference 11[11] T. Alger, “Cooled exhaust-gas recirculation for fuel economy and emissions improvement in gasoline engines,” Int. J. Engine Res., vol. 12, no. 3, pp. 252–264, 2011.Reference 12[12] J. Park, S. Song, and K. S. Lee, “Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization,” Appl. Energy, vol. 142, pp. 21–32, 2015.Reference 13[13] Y. Jamal, T. Wagner, and M. L. Wyszynski, “Exhaust gas reforming of gasoline at moderate temperatures,” International Journal of Hydrogen Energy, vol. 21, no. 6, pp. 507–519, 1996.Reference 14[14] W. W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine, 2 nd., vol. 2. New Jersey: Prentice Hall, 1997.Reference 15[15] P. Moulin, J. Chauvin, and B. Youssef, “Modelling and control of the air system of a turbocharged gasoline engine,” in The internation Federation of Automatic Control, 2008.Reference 16[16] A. J. T. B. DE LIMA, “Pollutant Formation Simulation Models ( CO , NOx and UHC ) for Ethanol-fueled Engines,” Universidade Estadual de Campinas, 2017.Reference 17[17] F. R. D. S. JÚNIOR, “Estudo de um modelo computacional para prever a ocorrência da detonação em um motor avançado a etanol,” Univeridade Estadual de Campinas, 2017.Reference 18[18] M. W. Chase, J. R. Davies, J. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF thermochemical Tables, 3rd ed. US & Canada: American chemical society and the American Institute of Physisics for National Bureau of Standards, 1985.Reference 19[19] A. Y. Cengel, Transfereência de calor e massa. Uma abordagem prática., 3rd ed. São Paulo: McGraw-

Yıl 2019, Cilt 22, Sayı 3, 149 - 157, 01.09.2019
https://doi.org/10.5541/ijot.499892

Öz

Kaynakça

  • Reference 1 [1] C. Park, Y. Choi, C. Kim, S. Oh, G. Lim, and Y. Moriyoshi, “Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas,” Fuel, vol. 89, no. 8, pp. 2118–2125, 2010.Reference 2[2] A. Boretti, “Analysis of desing of pure ethanol engines,” SAE 2010-01-1453, pp. 1–13, 2010.Reference 3[3] L. Bromberg and D. R. Cohn, “Effective Octane and Efficiency advantages of direct injection alcohol engines,” LFEE 2008-01, 2008.Reference 4 [4] S. M. Sarathy, P. Oßwald, N. Hansen, and K. Kohse-Höinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci., vol. 44, pp. 40–102, Oct. 2014.Reference 5 [5] C. Cuevas, D. Makaire, and P. Ngendakumana, “Thermo-hydraulic characterization of an automotive intercooler for a low pressure EGR application,” Appl. Therm. Eng., vol. 31, no. 14–15, pp. 2474–2484, 2011.Reference 6[6] A. K. Agrawal, S. K. Singh, S. Sinha, and M. K. Shukla, Effect of EGR on the Exhaust Gas Temperature and Exhaust Opacity in Compression Ignition Engines Using Jatropha Oil as Fuel, Parte 3., vol. 29. India: Springer, 2004.Reference 7[7] N. Ghassembaglou and L. Torkaman, “Efficient design of exhaust gas cooler in cold EGR equipped dies el engine,” Alexandria Eng. J., vol. 55, no. 2, pp. 769–778, 2016.Reference 8[8] L. Chen, T. Li, T. Yin, and B. Zheng, “A predictive model for knock onset in spark-ignition engines with cooled EGR,” Energy Convers. Manag., vol. 87, pp. 946–955, 2014.Reference 9[9] L. Bromberg, D. R. Cohn, and J. B. Heywood, “Calculations of knock suppression in highly turbocharged gasoline/ethanol engines using direct ethanol injection,” Lfee, pp. 1–17, 2006.Reference 10[10] L. Chen, P. Sun, S. Ding, and S. Yang, “Miscibility of ternary systems containing kerosene-based surrogate fuel and hydrous ethanol: Experimental data+thermodynamic modeling,” Fluid Phase Equilibria, vol. 379, Elsevier B.V., pp. 1–9, Oct-2014.Reference 11[11] T. Alger, “Cooled exhaust-gas recirculation for fuel economy and emissions improvement in gasoline engines,” Int. J. Engine Res., vol. 12, no. 3, pp. 252–264, 2011.Reference 12[12] J. Park, S. Song, and K. S. Lee, “Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization,” Appl. Energy, vol. 142, pp. 21–32, 2015.Reference 13[13] Y. Jamal, T. Wagner, and M. L. Wyszynski, “Exhaust gas reforming of gasoline at moderate temperatures,” International Journal of Hydrogen Energy, vol. 21, no. 6, pp. 507–519, 1996.Reference 14[14] W. W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine, 2 nd., vol. 2. New Jersey: Prentice Hall, 1997.Reference 15[15] P. Moulin, J. Chauvin, and B. Youssef, “Modelling and control of the air system of a turbocharged gasoline engine,” in The internation Federation of Automatic Control, 2008.Reference 16[16] A. J. T. B. DE LIMA, “Pollutant Formation Simulation Models ( CO , NOx and UHC ) for Ethanol-fueled Engines,” Universidade Estadual de Campinas, 2017.Reference 17[17] F. R. D. S. JÚNIOR, “Estudo de um modelo computacional para prever a ocorrência da detonação em um motor avançado a etanol,” Univeridade Estadual de Campinas, 2017.Reference 18[18] M. W. Chase, J. R. Davies, J. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF thermochemical Tables, 3rd ed. US & Canada: American chemical society and the American Institute of Physisics for National Bureau of Standards, 1985.Reference 19[19] A. Y. Cengel, Transfereência de calor e massa. Uma abordagem prática., 3rd ed. São Paulo: McGraw-

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Regular Original Research Article
Yazarlar

Ana Paula MATTOS> (Sorumlu Yazar)
University of Campinas
Brazil


Waldyr Luiz Ribeiro GALLO>
University of Campinas
0000-0003-1284-1096
Brazil

Yayımlanma Tarihi 1 Eylül 2019
Yayınlandığı Sayı Yıl 2019, Cilt 22, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { ijot499892, journal = {International Journal of Thermodynamics}, issn = {1301-9724}, eissn = {2146-1511}, address = {}, publisher = {Uluslararası Uygulamalı Termodinamik Derneği İktisadi İşletmesi}, year = {2019}, volume = {22}, number = {3}, pages = {149 - 157}, doi = {10.5541/ijot.499892}, title = {A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine}, key = {cite}, author = {Mattos, Ana Paula and Gallo, Waldyr Luiz Ribeiro} }
APA Mattos, A. P. & Gallo, W. L. R. (2019). A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine . International Journal of Thermodynamics , 22 (3) , 149-157 . DOI: 10.5541/ijot.499892
MLA Mattos, A. P. , Gallo, W. L. R. "A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine" . International Journal of Thermodynamics 22 (2019 ): 149-157 <https://dergipark.org.tr/tr/pub/ijot/issue/48498/499892>
Chicago Mattos, A. P. , Gallo, W. L. R. "A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine". International Journal of Thermodynamics 22 (2019 ): 149-157
RIS TY - JOUR T1 - A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine AU - Ana PaulaMattos, Waldyr Luiz RibeiroGallo Y1 - 2019 PY - 2019 N1 - doi: 10.5541/ijot.499892 DO - 10.5541/ijot.499892 T2 - International Journal of Thermodynamics JF - Journal JO - JOR SP - 149 EP - 157 VL - 22 IS - 3 SN - 1301-9724-2146-1511 M3 - doi: 10.5541/ijot.499892 UR - https://doi.org/10.5541/ijot.499892 Y2 - 2019 ER -
EndNote %0 International Journal of Thermodynamics A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine %A Ana Paula Mattos , Waldyr Luiz Ribeiro Gallo %T A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine %D 2019 %J International Journal of Thermodynamics %P 1301-9724-2146-1511 %V 22 %N 3 %R doi: 10.5541/ijot.499892 %U 10.5541/ijot.499892
ISNAD Mattos, Ana Paula , Gallo, Waldyr Luiz Ribeiro . "A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine". International Journal of Thermodynamics 22 / 3 (Eylül 2019): 149-157 . https://doi.org/10.5541/ijot.499892
AMA Mattos A. P. , Gallo W. L. R. A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine. International Journal of Thermodynamics. 2019; 22(3): 149-157.
Vancouver Mattos A. P. , Gallo W. L. R. A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine. International Journal of Thermodynamics. 2019; 22(3): 149-157.
IEEE A. P. Mattos ve W. L. R. Gallo , "A Study of the Influence of the Intercooled Turbocharger and Cooled EGR on the Performance Parameters of an Ethanol-fueled Engine", International Journal of Thermodynamics, c. 22, sayı. 3, ss. 149-157, Eyl. 2019, doi:10.5541/ijot.499892