Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept

Yıl 2019, Cilt 22, Sayı 3, 118 - 126, 01.09.2019
https://doi.org/10.5541/ijot.552938

Öz

Selection, design, and optimization of the energy system with the efficient method is one the major problem in recent years. The combined Emergy-Exergy-Economic-Environmental analysis is one of these new methods selected for the analysis and optimization of energy systems. In this paper, the low temperature small solar-driven Kalina power plant is selected for distributed power generation in Qom city. The analysis procedure based on Emergy, Exergy, Economic and Environmental concepts is performed in two general steps. In the first step, the thermodynamic and exergy analysis is performed and the required thermodynamic and exergetic parameters are determined. For the calculation of emergy for different component and mass flow, in the second step, the weight and price of all equipment are evaluated and the emergy analysis is performed. Based on this analysis the emergy evaluation parameters such as monetary an ecological performance are presented and based on these parameters, the most destructive equipment is selected and a suitable procedure for improvement in the considered system is presented. In the final step, the exergy and emergy parameters in the proposed solar Kalina cycle are compared with some renewable and fossil power plant and this comparison show that the proposed cycle has suitable characteristics.

Kaynakça

  • 1. Kalina, A.I., Generation of energy by means of a working fluid, and regeneration of a working fluid, 1982, Google Patents.
  • 2. Rogdakis, E. and K. Antonopoulos, A high efficiency NH3/H2O absorption power cycle. Heat Recovery Systems and CHP, 1991. 11(4): p. 263-275.
  • 3. Hettiarachchi, H.M., et al., The performance of the Kalina cycle system 11 (KCS-11) with low-temperature heat sources. Journal of Energy Resources Technology, 2007. 129(3): p. 243-247.
  • 4. Murugan, R. and P. Subbarao, Thermodynamic analysis of Rankine-Kalina combined cycle. International Journal of Thermodynamics, 2008. 11(3): p. 133-141.
  • 5. Lolos, P. and E. Rogdakis, A Kalina power cycle driven by renewable energy sources. Energy, 2009. 34(4): p. 457-464.
  • 6. Sun, F., Y. Ikegami, and B. Jia, A study on Kalina solar system with an auxiliary superheater. Renewable Energy, 2012. 41: p. 210-219.
  • 7. Ganesh, N.S. and T. Srinivas, Design and modeling of low temperature solar thermal power station. Applied energy, 2012. 91(1): p. 180-186.
  • 8. Wang, J., et al., Parametric analysis and optimization of a Kalina cycle driven by solar energy. Applied Thermal Engineering, 2013. 50(1): p. 408-415.
  • 9. Peng, S., H. Hong, and H. Jin, Triple cycle for solar thermal power system adapted to periods with varying insolation. Energy, 2013. 60: p. 129-138.
  • 10. Modi, A. and F. Haglind, Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation. Applied Thermal Engineering, 2014. 65(1-2): p. 201-208.
  • 11. Sun, F., et al., Energy–exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11). Renewable Energy, 2014. 66: p. 268-279.
  • 12. Zare, V., S. Mahmoudi, and M. Yari, On the exergoeconomic assessment of employing Kalina cycle for GT-MHR waste heat utilization. Energy Conversion and Management, 2015. 90: p. 364-374.
  • 13. Rodríguez, C.E.C., et al., Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Applied Thermal Engineering, 2013. 52(1): p. 109-119.
  • 14. Boyaghchi, F.A. and M. Sabaghian, Multi objective optimisation of a Kalina power cycle integrated with parabolic trough solar collectors based on exergy and exergoeconomic concept. International Journal of Energy Technology and Policy, 2016. 12(2): p. 154-180.
  • 15. Reza, B., R. Sadiq, and K. Hewage, Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: a case study on paved roads. Clean Technologies and Environmental Policy, 2014. 16(2): p. 251-266.
  • 16. Brown, M.T. and S. Ulgiati, Emergy evaluations and environmental loading of electricity production systems. Journal of cleaner production, 2002. 10(4): p. 321-334.
  • 17. Zhang, H., et al., Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. Journal of Cleaner Production, 2018. 183: p. 1207-1215.
  • 18. Zhang, M., et al., Embodied energy and emergy analyses of a concentrating solar power (CSP) system. Energy Policy, 2012. 42: p. 232-238.
  • 19. Sha, S. and M. Hurme, Emergy evaluation of combined heat and power plant processes. Applied thermal engineering, 2012. 43: p. 67-74.
  • 20. Aghbashlo, M. and M.A. Rosen, Consolidating exergoeconomic and exergoenvironmental analyses using the emergy concept for better understanding energy conversion systems. Journal of Cleaner Production, 2018. 172: p. 696-708.
  • 21. Bastianoni, S., et al., Emergy as a function of exergy. Energy, 2007. 32(7): p. 1158-1162.
  • 22. Geng, Y., et al., Emergy analysis of an industrial park: the case of Dalian, China. Science of the total environment, 2010. 408(22): p. 5273-5283.
  • 23. Brown, M. and S. Ulgiati, Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecological engineering, 1997. 9(1-2): p. 51-69.
  • 24. Pan, H., et al., An emergy based sustainability evaluation on a combined landfill and LFG power generation system. Energy, 2018. 143: p. 310-322.
  • 25. Cao, K. and X. Feng, Distribution of emergy indices and its application. Energy & fuels, 2007. 21(3): p. 1717-1723.
  • 26. Chen, S. and B. Chen, Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: an emergy synthesis. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 3948-3959.
  • 27. Smith, R., Chemical process: design and integration2005: John Wiley & Sons.
  • 28. Purevsuren, D., Thermoeconomic analysis of a new geothermal utilization CHP plant in Tsetserleg, Mongolia2005: United Nations University.
  • 29. Zhou, C., E. Doroodchi, and B. Moghtaderi, An in-depth assessment of hybrid solar–geothermal power generation. Energy conversion and management, 2013. 74: p. 88-101.
  • 30. Cavalcanti, E.J.C., Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system. Renewable and Sustainable Energy Reviews, 2017. 67: p. 507-519.
  • 31. Lazzaretto, A. and G. Tsatsaronis, SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 2006. 31(8-9): p. 1257-1289.
  • 32. Pulselli, F.M., N. Patrizi, and S. Focardi, Calculation of the unit emergy value of water in an Italian watershed. Ecological modelling, 2011. 222(16): p. 2929-2938.
  • 33. Baral, A. and B.R. Bakshi, Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol. Ecological Modelling, 2010. 221(15): p. 1807-1818.
  • 34. Brown, M.T., M. Raugei, and S. Ulgiati, On boundaries and ‘investments’ in emergy synthesis and LCA: a case study on thermal vs. photovoltaic electricity. Ecological Indicators, 2012. 15(1): p. 227-235.

Yıl 2019, Cilt 22, Sayı 3, 118 - 126, 01.09.2019
https://doi.org/10.5541/ijot.552938

Öz

Kaynakça

  • 1. Kalina, A.I., Generation of energy by means of a working fluid, and regeneration of a working fluid, 1982, Google Patents.
  • 2. Rogdakis, E. and K. Antonopoulos, A high efficiency NH3/H2O absorption power cycle. Heat Recovery Systems and CHP, 1991. 11(4): p. 263-275.
  • 3. Hettiarachchi, H.M., et al., The performance of the Kalina cycle system 11 (KCS-11) with low-temperature heat sources. Journal of Energy Resources Technology, 2007. 129(3): p. 243-247.
  • 4. Murugan, R. and P. Subbarao, Thermodynamic analysis of Rankine-Kalina combined cycle. International Journal of Thermodynamics, 2008. 11(3): p. 133-141.
  • 5. Lolos, P. and E. Rogdakis, A Kalina power cycle driven by renewable energy sources. Energy, 2009. 34(4): p. 457-464.
  • 6. Sun, F., Y. Ikegami, and B. Jia, A study on Kalina solar system with an auxiliary superheater. Renewable Energy, 2012. 41: p. 210-219.
  • 7. Ganesh, N.S. and T. Srinivas, Design and modeling of low temperature solar thermal power station. Applied energy, 2012. 91(1): p. 180-186.
  • 8. Wang, J., et al., Parametric analysis and optimization of a Kalina cycle driven by solar energy. Applied Thermal Engineering, 2013. 50(1): p. 408-415.
  • 9. Peng, S., H. Hong, and H. Jin, Triple cycle for solar thermal power system adapted to periods with varying insolation. Energy, 2013. 60: p. 129-138.
  • 10. Modi, A. and F. Haglind, Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation. Applied Thermal Engineering, 2014. 65(1-2): p. 201-208.
  • 11. Sun, F., et al., Energy–exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11). Renewable Energy, 2014. 66: p. 268-279.
  • 12. Zare, V., S. Mahmoudi, and M. Yari, On the exergoeconomic assessment of employing Kalina cycle for GT-MHR waste heat utilization. Energy Conversion and Management, 2015. 90: p. 364-374.
  • 13. Rodríguez, C.E.C., et al., Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Applied Thermal Engineering, 2013. 52(1): p. 109-119.
  • 14. Boyaghchi, F.A. and M. Sabaghian, Multi objective optimisation of a Kalina power cycle integrated with parabolic trough solar collectors based on exergy and exergoeconomic concept. International Journal of Energy Technology and Policy, 2016. 12(2): p. 154-180.
  • 15. Reza, B., R. Sadiq, and K. Hewage, Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: a case study on paved roads. Clean Technologies and Environmental Policy, 2014. 16(2): p. 251-266.
  • 16. Brown, M.T. and S. Ulgiati, Emergy evaluations and environmental loading of electricity production systems. Journal of cleaner production, 2002. 10(4): p. 321-334.
  • 17. Zhang, H., et al., Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. Journal of Cleaner Production, 2018. 183: p. 1207-1215.
  • 18. Zhang, M., et al., Embodied energy and emergy analyses of a concentrating solar power (CSP) system. Energy Policy, 2012. 42: p. 232-238.
  • 19. Sha, S. and M. Hurme, Emergy evaluation of combined heat and power plant processes. Applied thermal engineering, 2012. 43: p. 67-74.
  • 20. Aghbashlo, M. and M.A. Rosen, Consolidating exergoeconomic and exergoenvironmental analyses using the emergy concept for better understanding energy conversion systems. Journal of Cleaner Production, 2018. 172: p. 696-708.
  • 21. Bastianoni, S., et al., Emergy as a function of exergy. Energy, 2007. 32(7): p. 1158-1162.
  • 22. Geng, Y., et al., Emergy analysis of an industrial park: the case of Dalian, China. Science of the total environment, 2010. 408(22): p. 5273-5283.
  • 23. Brown, M. and S. Ulgiati, Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecological engineering, 1997. 9(1-2): p. 51-69.
  • 24. Pan, H., et al., An emergy based sustainability evaluation on a combined landfill and LFG power generation system. Energy, 2018. 143: p. 310-322.
  • 25. Cao, K. and X. Feng, Distribution of emergy indices and its application. Energy & fuels, 2007. 21(3): p. 1717-1723.
  • 26. Chen, S. and B. Chen, Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: an emergy synthesis. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 3948-3959.
  • 27. Smith, R., Chemical process: design and integration2005: John Wiley & Sons.
  • 28. Purevsuren, D., Thermoeconomic analysis of a new geothermal utilization CHP plant in Tsetserleg, Mongolia2005: United Nations University.
  • 29. Zhou, C., E. Doroodchi, and B. Moghtaderi, An in-depth assessment of hybrid solar–geothermal power generation. Energy conversion and management, 2013. 74: p. 88-101.
  • 30. Cavalcanti, E.J.C., Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system. Renewable and Sustainable Energy Reviews, 2017. 67: p. 507-519.
  • 31. Lazzaretto, A. and G. Tsatsaronis, SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 2006. 31(8-9): p. 1257-1289.
  • 32. Pulselli, F.M., N. Patrizi, and S. Focardi, Calculation of the unit emergy value of water in an Italian watershed. Ecological modelling, 2011. 222(16): p. 2929-2938.
  • 33. Baral, A. and B.R. Bakshi, Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol. Ecological Modelling, 2010. 221(15): p. 1807-1818.
  • 34. Brown, M.T., M. Raugei, and S. Ulgiati, On boundaries and ‘investments’ in emergy synthesis and LCA: a case study on thermal vs. photovoltaic electricity. Ecological Indicators, 2012. 15(1): p. 227-235.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik
Bölüm Regular Original Research Article
Yazarlar

Ehsan RAFAT Bu kişi benim

Iran


Mojtaba BABAELAHİ> (Sorumlu Yazar)
University of Qom
0000-0001-5829-6228
Iran


Ehsan MOFİDİPOUR>

Iran

Yayımlanma Tarihi 1 Eylül 2019
Yayınlandığı Sayı Yıl 2019, Cilt 22, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { ijot552938, journal = {International Journal of Thermodynamics}, issn = {1301-9724}, eissn = {2146-1511}, address = {}, publisher = {Uluslararası Uygulamalı Termodinamik Derneği İktisadi İşletmesi}, year = {2019}, volume = {22}, number = {3}, pages = {118 - 126}, doi = {10.5541/ijot.552938}, title = {Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept}, key = {cite}, author = {Rafat, Ehsan and Babaelahi, Mojtaba and Mofidipour, Ehsan} }
APA Rafat, E. , Babaelahi, M. & Mofidipour, E. (2019). Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept . International Journal of Thermodynamics , 22 (3) , 118-126 . DOI: 10.5541/ijot.552938
MLA Rafat, E. , Babaelahi, M. , Mofidipour, E. "Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept" . International Journal of Thermodynamics 22 (2019 ): 118-126 <https://dergipark.org.tr/tr/pub/ijot/issue/48498/552938>
Chicago Rafat, E. , Babaelahi, M. , Mofidipour, E. "Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept". International Journal of Thermodynamics 22 (2019 ): 118-126
RIS TY - JOUR T1 - Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept AU - EhsanRafat, MojtabaBabaelahi, EhsanMofidipour Y1 - 2019 PY - 2019 N1 - doi: 10.5541/ijot.552938 DO - 10.5541/ijot.552938 T2 - International Journal of Thermodynamics JF - Journal JO - JOR SP - 118 EP - 126 VL - 22 IS - 3 SN - 1301-9724-2146-1511 M3 - doi: 10.5541/ijot.552938 UR - https://doi.org/10.5541/ijot.552938 Y2 - 2019 ER -
EndNote %0 International Journal of Thermodynamics Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept %A Ehsan Rafat , Mojtaba Babaelahi , Ehsan Mofidipour %T Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept %D 2019 %J International Journal of Thermodynamics %P 1301-9724-2146-1511 %V 22 %N 3 %R doi: 10.5541/ijot.552938 %U 10.5541/ijot.552938
ISNAD Rafat, Ehsan , Babaelahi, Mojtaba , Mofidipour, Ehsan . "Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept". International Journal of Thermodynamics 22 / 3 (Eylül 2019): 118-126 . https://doi.org/10.5541/ijot.552938
AMA Rafat E. , Babaelahi M. , Mofidipour E. Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept. International Journal of Thermodynamics. 2019; 22(3): 118-126.
Vancouver Rafat E. , Babaelahi M. , Mofidipour E. Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept. International Journal of Thermodynamics. 2019; 22(3): 118-126.
IEEE E. Rafat , M. Babaelahi ve E. Mofidipour , "Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept", International Journal of Thermodynamics, c. 22, sayı. 3, ss. 118-126, Eyl. 2019, doi:10.5541/ijot.552938