Araştırma Makalesi
BibTex RIS Kaynak Göster

Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature

Yıl 2020, Cilt: 23 Sayı: 3, 176 - 195, 27.08.2020
https://doi.org/10.5541/ijot.720015

Öz

Alcohols have a long history of several uses worldwide. Because of their relatively low toxicity compared with other many chemical compounds and ability to dissolve non-polar substances, alcohols can be found into beverages for adults, used as combustion engine fuel, as excipient in medical drugs, as component into personal-care products and in many scientific and industrial applications. One of the key problems of the chemical industry is the lack of available physical properties data for equipment industrial design and improvement of theoretical models for simulation. The present work deals with the modelling and experimental measurement (density and ultrasonic velocity) of thermophysical properties of short chain hydroxylic compounds (C1-C6). Fitting equations were applied to the experimental data in order to correlate for later computer based design. Different derived magnitudes were computed from the experimentally measured density and ultrasonic velocity, due to their importance for theoretical calculations and development of new models. The estimation of the studied properties was made by the application of different theoretical procedures. A wide comparison was made with available open literature, being evident the lack of reliable information in the ranges studied until now.

Destekleyen Kurum

National Council for Scientific and Technological Development

Proje Numarası

438376/2018-8 and 313601/2019-4

Kaynakça

  • [1] Valsaraj, K. T., 2000. Elements of Environmental Engineering: Thermodynamics and Kinetics. Lewis Publishers.
  • [2] Schneiter, R. W., 2012. Environmental Enginnering Solved Problems. Professional Publications, Inc.
  • [3] Wright, R. T., 2016. Environmental Science: Towards a Sustainable Future. Pearson Publisher.
  • [4] P. Tundo, P. Anastas, D. S. Black, J. Breen, T., Collins, S. Memoli, J. Miyamoto, M. Polyakoff, W. Tumas, “Synthetic pathways and processes in green chemistry: Introductory overview,” Pure Appl. Chem., 72, 1207-1228, 2000.
  • [5] P. Anastas, N. Eghbali, “Green Chemistry: Principles and practice,” Chem. Soc. Rev., 39, 301-312, 2010.
  • [6] G. Ibram, “Conversion of carbon dioxide into methanol - A potential liquid fuel: Fundamental challenges and opportunities (a review),” Renew. Sust. Energ. Rev., 31, 221–257, 2014.
  • [7] Phillips, R., 2014. Alcohol: A History. University of North Carolina Press.
  • [8] E. Nova, G. C. Baccan, A. Veses, B. Zapatera, A. Marcos, “Potential health benefits of moderate alcohol consumption: current perspectives in research,” Proc. Nutr. Soc., 71(2), 307-315, 2012.
  • [9] M. Koç, Y. Sekmen, T. Topgül, H. S. Yücesu, “The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine,” Renew. Energ., 34(10), 2101-2106, 2009.
  • [10] V. R. Surisetty, A. K. Dalai, J. Kozinski, “Alcohols as alternative fuels: An overview,” Appl. Catal. A-Gen., 404 (1-2), 1-11, 2011.
  • [11] M. B. Çelik, B. Özdalyan, F. Alkan, “The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine,” Fuel, 90(4), 1591-1598, 2011.
  • [12] Ch. Jin, M. Yao, H. Liu, Ch. F. Lee, J. Ji, “Progress in the production and application of n-butanol as a biofuel,” Renew. Sust. Energ. Rev., 15(8), 4080-4106, 2011.
  • [13] J. Campos-Fernández, J. M. Arnal, J. Gómez, M. P. Dorado, “A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine,” Appl. Energ., 95, 267-275, 2012.
  • [14] S. Kumar, J. H. Cho, J. P. I. Moon, “Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines,” Renew. Sust. Energ. Rev., 22, 46-72, 2013.
  • [15] B. M. Masum, H. H. Masjuki, M. A. Kalam, S. M. Palash, M. A. Wakil, S. Imtenan, “Tailoring the key fuel properties using different alcohols (C2–C6) and their evaluation in gasoline engine,” Energ. Convers. Managem., 88, 382-390, 2014.
  • [16] M. K. Balki, C. Sayin, M. Canakci, “The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine,” Fuel, 115, 901-906, 2014.
  • [17] A. Uyumaz, “An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures,” Energ. Convers. Managem., 98(1), 199-207, 2015.
  • [18] W. Tutak, K. Lukács, S. Szwaja, Á. Bereczky, “Alcohol–diesel fuel combustion in the compression ignition engine,” Fuel, 154, 196-206, 2015.
  • [19] A. Elfasakhany, “Experimental study of dual n-butanol and iso-butanol additives on spark-ignition engine performance and emissions,” Fuel, 163, 166-174, 2016.
  • [20] I. M. Yusri, R. Mamat, G. Najafi, A. Razman, Omar I. Awad, W. H. Azmi, W. F. W. Ishak, A. I. M. Shaiful, “Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions,” Renew. Sust. Energ. Rev., 77, 169-181, 2017.
  • [21] J. T. Wang, S. Wasmus, R. F. Savinell, “Evaluation of ethanol, propan-1-ol and propan-2-ol in a direct oxidation polymer-electrolyte full cell: a real-time mass spectrometry study,” J. Electrochem. Soc., 142, 4218-4224, 1995.
  • [22] C. Lamy, A. Lima, V. L. Rhun, C. Coutanceau, J. M. L´eger, “Recent advances in the development of direct alcohol fuel cells (DAFC) J. Power Sources, 105, 283-296, 2002.
  • [23] A. Anis, S. M. Al-Zahrani, F. A. Abd El Aleem, “Optimization of direct propan-2-ol fuel cell performance using statistical design of experiments approach,” Int. J. Electrochem. Sci., 7, 6221-6233, 2012.
  • [24] V. Hönig, M. Kotek, J. Mařík, “Use of butanol as a fuel for internal combustion engines,“ Agron. Res., 12(2), 333-340, 2014.
  • [25] M. R. Ladish, “Fermentation-derived butanol and scenarios for its uses in energy-related applications,” Enzyme Microb. Tech., 13(3), 280-283, 1991.
  • [26] S. Liu, N. Qureshi, S. R. Hughes, “Progress and perspectives on improving butanol tolerance,” World J. Microbiol. Biotechnol., 33, 51-55, 2017.
  • [27] Q. Zhang, X. Hu, Z. Li, B. Liu, “Combustion and emission characteristics of diesel engines using diesel, DMF/diesel, and n-pentanol/diesel fuel blends,” J. Energ. Eng-ASCE, 144(3), 2018.
  • [28] V. Rajasekar, “Experimental investigations to study the effect of butanol and pentanol addition in a jatropha oil methyl ester fuelled compression ignition engine,” J. Chem. Pharm. Sci., 9(1), 665-668, 2016
  • [29] D. Belsito, D. Bickers, M. Bruze, P. Calow , H. Greim, J. M. Hanifin, A. E. Rogers, J. H. Saurat, I. G. Sipes, H. Tagami, “A safety assessment of branched chain saturated alcohols when used as fragrance ingredients,” Food Chem. Toxicol., 48, S1-S46, 2010.
  • [30] N. Yilmaz, E. Ileri, A. Atmanli, “Performance of biodiesel/higher alcohols blends in a diesel engine,” Energy Res. J., 40(8), 1134-1143, 2016.
  • [31] M. Vinod Babu, K. Madhu Murthy, G. Amba Prasad Rao, “Butanol and pentanol: The promising biofuels for CI engines - A review,” Energy Res. J., 78, 1068-1088, 2017.
  • [32] O. Bortolini, S. Campestrini, F. Di Furia, G. Modena, “Metal catalysis in oxidation by peroxides. 27. Anionic molybdenum-picolinate N-oxido-peroxo complex: an effective oxidant of primary and secondary alcohols in nonpolar solvents,” J. Organic Chem., 52, 5467-5469, 1987.
  • [33] Hudlicky, M., 1990. Oxidations in Organic Chemistry. ACS, Washington DC.
  • [34] Kirk-Othmer, 1978. Encyclopedia of Chemical Technology, 3rd Edition, Wiley-New York.
  • [35] D. L. Dyer, A. Shinder, F. Shinder, “Alcohol-free instant hand sanitizer reduces elementary school illness absenteeism,” Fam. Med., 32(9), 633-638, 2000.
  • [36] E. L. Larson, J. Cimiotti, J. Haas, M. Parides, P. Della-Latta, L. Saiman, “Effect of antiseptic handwashing vs alcohol sanitizer on health care–associated infections in neonatal intensive care units,” Arch. Pediatr. Adolesc. Med., 159, 378-383, 2005.
  • [37] M. S. Reichel, “Efficacy of surface disinfectant cleaners against emerging highly resistant gram -negative bacteria,” BMC Infect. Dis., 292(14), 1-8, 2014.
  • [38] A. Dixit, P. Pandey, R. Mahajan, D. C. Dhasmana, “Alcohol based hand sanitizers: Assurance and apprehensions revisited,” Res. J. Pharm. Biol. Chem. Sci., 5(1), 558-563, 2014.
  • [39] M. Iglesias, B. Orge, J. Tojo, “Densities, refractive indices, and derived excess properties of {x1 CH3COCH3 + x2 CH3OH + (1-x1-x2) CH3CH(OH)CH3} at the temperature 298.15 K,” J. Chem. Thermodyn., 27(11), 1161-1167, 1995.
  • [40] M. Iglesias, B. Orge, J. Tojo, “Densities and refractive indices for acetone + methanol + propan-1-ol at 298.15 K,” J. Chem. Eng. Data, 41(2), 218-221, 1996.
  • [41] M. Iglesias, G. Marino, B. Orge, M. M. Piñeiro, J. Tojo, “Liquid-liquid equilibria, and thermodynamic properties of the system methyl acetate + methanol + water at 298.15 K,” Phys. Chem. Liq., 37(3), 193-213, 1999.
  • [42] M. Iglesias, R. Gonzalez-Olmos, “Analysis of methanol extraction from aqueous solution by n-hexane: Equilibrium diagrams as a function of temperature,“ J. Mol. Liq., 130(1-3), 52-58, 2007.
  • [43] V. H. Alvarez, S. Mattedi, M. Iglesias, R. Gonzalez-Olmos, J.M. Resa, “Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa,” Phys. Chem. Liq., 49(1), 052-071, 2011.
  • [44] R. S. Andrade, M. Iglesias, “Fluid phase topology of benzene + cyclohexane + propan-1-ol at 101.3 kPa,” Int. J. Thermophys., 36(7), 1498-1518, 2015.
  • [45] J. Kulhavy, R. S. Andrade, S. Barros, M. Iglesias, “Influence of temperature on thermodynamics of protic ionic liquid 2-hydroxy diethylammonium lactate (2-HDEAL) + short hydroxylic solvents,” J. Mol. Liq., 213, 92-106, 2016.
  • [46] C. Ravazzano, K. Lima, R. S. Andrade, M. Iglesias, “Volumetric and acoustic study of a short protic ionic liquids binary mixture: 2-hydroxy ethylammonium formate (2-HEAF) + 2-hydroxy ethylammonium acetate (2-HEAA),” Int. J. Thermodyn., 19(4), 244-250, 2016.
  • [47] R. S. Andrade, C. Gonzalez, M. Iglesias, “Changes of refractive indices for ethanol+water+(ethyl acetate or pentan-1-ol) at 298.15 K,” Int. J. Thermodyn., 20(3), 174-181, 2017.
  • [48] R. S. Andrade, D. Torres, F. R. Ribeiro, B. G. Chiari-Andreó, J. A. Oshiro-Junior, M. Iglesias, “Sustainable cotton dyeing in nonaqueous medium applying protic ionic liquids,” ACS Sustain. Chem. Eng., 5(10), 8756-8765, 2017.
  • [49] S. Barros, R. S. Andrade, M. Iglesias, “Effect of temperature on thermodynamic properties of protic ionic liquid 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvents,” Int. J. Thermodyn., 21(2), 70-80, 2018.
  • [50] S. Barros, R. S. Andrade, M. Iglesias, “Thermodynamics of ethanol+water+propan-2-ol mixture at the range of temperature 288.15-323.15 K,” Int. J. Thermodyn., 21(2), 82-92, 2018.
  • [51] A. Mchaweh, A. Alsaygh, K. Nasrifar, M. Moshfeghian, “A simplified method for calculating saturated liquid densities,” Fluid Phase Equilib., 224, 157-167, 2004.
  • [52] H. G. Rackett, “Equation of state for saturated liquids,” J. Chem. Eng. Data, 15, 514-517, 1970.
  • [53] C. F. Spencer, R. P. Danner, “Improved equation for prediction of saturated liquid density,” J. Chem. Eng. Data, 17(2), 236-241, 1972.
  • [54] M. L. Bradford, G. Thodos, “Densities of hydrocarbons in their saturated vapor and liquid states,” Can. J. Chem. Eng., 46(4), 277-283, 1968.
  • [55] L. Riedel, “Die Flüssigkeitsdichte im Sättigungszustand. Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Teil II,” Chemie-Ing-Tech, 26, 259-264, 1954.
  • [56] G. Narsimhan, “On the derivation and application of a new vapor pressure equation,” Can. J. Chem. Eng., 45(4), 230-233, 1967.
  • [57] L. C. Yen, S. S. A. Woods, “A generalized equation for computer calculation of liquid densities,” AIChE J., 12(1), 95-99, 1966.
  • [58] S.W. Campbell, G. Thodos, “Prediction of saturated liquid densities and critical volumes for polar and nonpolar substances,” J. Chem. Eng. Data, 30, 102-111, 1985.
  • [59] V. L. Bhirud, “Saturated liquid densities of normal fluids,” AIChE J., 24(6), 1127- 1131, 1978.
  • [60] W. Schaffs, “Zur bestimmung von molekülradien organischer flüssigkeiten aus schallgeschwindigkeit sund dichte, “ Z. Phys., 114, 110-115, 1975.
  • [61] Dalbert, T. E., Danner, R. P., 1989. Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation. Taylor and Francis.
  • [62] E. Vercher, A. V. Orchilles, P. J. Miguel, A. Martinez-Andreu, “Volumetric and ultrasonic studies of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid with methanol, ethanol, propan-1-ol, and water at several temperatures,” J. Chem. Eng. Data, 52(4), 1468-1482, 2007.
  • [63] N. Munster, C. A. Planck, W.L.S. Laukhuf, P. M. Christopher, “Vapor-liquid equilibria of the ternary system methylborate-methyl alcohol-benzene,” J. Chem. Eng. Data, 29, 170-178, 1984.
  • [64] Y. S. Won, D. K. Chung, a. F. Mills, “Density, viscosity, surface tension, and carbon dioxide solubility and diffusivity of methanol, ethanol, aqueous propanol and aqueous ethylene glycol at 25 ºC,” J. Chem. Eng. Data., 26, 140-141, 1981.
  • [65] J. M. Goenaga A. Gayol, R. G. Concha, M. Iglesias, J. M. Resa, “Effect of temperature on thermophysical properties of ethanol + aliphatic alcohols (C4-C5) mixtures,” Mon. Chem., 138, 403-436, 2007.
  • [66] P. N. Sibiya, N. Deenadayalu, “Excess molar volumes and partial molar volumes of binary systems (ionic liquid + methanol or ethanol or propan-1-ol) at T = (298.15, 303.15 and 313.15) K,” S. Afr. J. Chem., 62, 20–25, 2009.
  • [67] P. Bhanuprakash, N. V. V. Jyothi, C. Narasimharao, M. Raveendra, K. Sivakumar, “Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents,” J. Chem. Thermodyn., 122, 113-124, 2018.
  • [68] A. A. Rostami, M. J. Chaichi, M. Sharifi, “Densities, viscosities, and excess Gibbs energy of activation for viscous flow, for binary mixtures of dimethyl phthalate (DMP) with pentan-1-ol, butan-1-ol, and propan-1-ol at two temperatures,” Mon. Chem. 138, 967-971, 2007.
  • [69] Riddick, J. A., Bunger, W. B., Sakano, T. K., 1986. Organic Solvents, Willey.
  • [70] I. C. Hwang, J. I. Kim, S. J. Park, S. J. In, “Liquid-liquid equilibrium for ternary systems of propyl vinyl ether + C3 or C4 alcohols + water at 298.15 K and excess molar enthalpies for ternary and constituent binary systems of propyl vinyl ether + ethanol + isooctane at 303.15 K,” J. Chem. Eng. Data, 53, 475-480, 2008.
  • [71] T. M. Aminabhavi, B. Gopalakrishna, “Densities, viscosities, and refractive indices of bis(2-methoxyethyl) ether + cyclohexane or + 1,2,3,4-tetrahydronaphthalene and of 2-ethoxyethanol + propan-1-ol, + propan-2-ol, or + butan-1-ol,” J. Chem. Eng. Data, 40(2), 462-467, 1995.
  • [72] B. Gonzalez, A. Dominguez, J. Tojo, “Viscosity, density and speed of sound of methylcyclopentane with primary and secondary alcohols at T=(293.15, 298.15 and 303.15) K,” J. Chem. Thermodyn., 38, 1172-1185, 2006a.
  • [73] L. Mussari, M. Postigo, C. Lafuente, F. M. Royo, J. S. Urieta, “Viscosity measurements for the binary mixtures of 1,2-dichloroethane or 1,2-dibromoethane with isomeric butanols,” J. Chem. Eng. Data, 45, 086-091, 2000.
  • [74] M. M. Alavianmehr, M. Sharifi, M. N. S. Rad, “Measurement and modeling of volumetric properties and sound speeds of several mixtures of alcohol liquids containing propan-1-ol and propan-2-ol at T=(298.15–323.15) K and ambient pressure,” Fluid Phase Equilib., 376, 181-192, 2014.
  • [75] R. K. Shukla, A. Kumar, N. Awasthi, U. Srivastava, K. Srivastava, “Speed of sound and isentropic compressibility of benzonitrile, chlorobenzene, benzyl chloride and phenylmethanol with benzene from various models at temperature range 298.15–313.15 K,” Arabian J. Chem., 10(7), 895-905, 2017.
  • [76] S. Singh, M. Aznar, N. Deenadayalu, “Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K,” J. Chem. Thermodyn., 57, 238-247, 2013.
  • [77] B. Gonzalez, A. Domínguez, J. Tojo, “Dynamic viscosities, densities, and speed of sound and derived properties of the binary systems acetic acid with water, methanol, ethanol, ethyl acetate and methyl acetate at T = (293.15, 298.15, and 303.15) K at atmospheric pressure,” J. Chem. Eng. Data, 49, 1590-1596, 2004.
  • [78] K. M. I. Aralaguppi, J. G. Baragi, “Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-propan-1-ol, or 3-methyl-butan-1-ol at T=(298.15, 303.15, and 308.15 K),” J. Chem. Thermodyn., 38, 434-442, 2006.
  • [79] M. M. Papari, H. Ghodrati, F. Fadaei, R. Sadeghi, S. Behrouz, M. N. Soltani Rad, J. Moghadasi, “Volumetric and ultrasonic study of mixtures of 2-phenylethanol with butan-1-ol, butan-2-ol, and 2-methyl-butan-1-ol at T=(298.15–323.15) K and atmospheric pressure: Measurement and prediction,” J. Mol. Liq., 180, 121-128, 2013.
  • [80] G. P. Dubey, S. Rani, P. Kaur, “Studies of mixing properties of binary systems of di-n-butylamine with alkanols at T=(293.15, 298.15, 303.15, 308.15 and 313.15) K,” J. Mol. Liq., 234, 335-341, 2017.
  • [81] L. C. Lynnworth, “Industrial applications of ultrasound. A review. II. Measurements, tests, and process control using low intensity ultrasound,” IEEE Trans. Sonics Ultrasonics., 54-22(2), 071-101, 1975.
  • [82] DIADEM PUBLIC 1.2.0, 2000. The DIPPR Information and Data Evaluation Manager.
  • [83] A. Bondi, “van der Waals volumes and radii,” J. Phys. Chem., 68, 441-451, 1964.
  • [84] American Institute of Physics Handbook, 1972. 3rd ed., McGraw-Hill.
  • [85] R. C. Wilhoit, B. J. Zwolinski, American Chemical Society, American Institute of Physics and United States. National Bureau of Standards Physical and thermodynamic properties of aliphatic alcohols. American Chemical Society, [New York], 1973.
  • [86] Lange, N. A., 1973. Handbook of Chemistry, 11th ed., McGraw-Hill.
  • [87] Weast, R. C., 1974. Handbook of Chemistry and Physics, 55th ed., Chemical Rubber Publishing Co.
  • [88] J. L. Hales, J. H. Ellender, “Liquid densities from 293 to 490 K of nine aliphatic alcohols,” J. Chem. Thermodyn., 8(12), 1177-1184, 1976.
  • [89] M. Diaz-Peña, G. Tardajos, “Isothermal compressibilities of n-1-alcohols from methanol to 1-dodecanol at 298.15, 308.15, 318.15, and 333.15 K,” J. Chem. Thermodyn., 11, 441-445, 1979.
  • [90] J. Ortega, “Densities and refractive indices of pure alcohols as a function of temperature,” J. Chem. Eng. Data, 27, 312-317, 1982.
  • [91] M. A. Rauf, G. H. Stewart, Farhataziz, “Viscosities and densities of binary mixtures of 1-alkanol from 15 to 55 ºC,” J. Chem. Eng. Data, 28, 324-328, 1983.
  • [92] B. Garcia, C. A. Herrera, J. M. Leal, “Thermodynamics of 2-pyrrolidinone + n-alkanol binary mixtures: activation properties,” Thermochim. Acta, 180, 159-167, 1991.
  • [93] S. M. Pereira, M. A. Rivas, J. L. Legido, T. P. Iglesias, “Speeds of sound, densities, isentropic compressibilities of the system (methanol + polyethylene glycol dimethyl ether 250) at temperatures from 293.15 to 333.15 K,” J. Chem. Thermodyn., 35(3), 383-391, 2003.
  • [94] E. J. Gonzalez, L. Alonso, A. Domínguez, “Physical properties of binary mixtures of the ionic liquid 1-methyl-3-octylimidazolium chloride with methanol, ethanol, and propan-1-ol at T = (298.15, 313.15, and 328.15) K and at P = 0.1 MPa,” J. Chem. Eng. Data, 51(4), 1446–1452, 2006b.
  • [95] A. N. Kannappan, S. Thirumaran, R. Palani, “Volumetric and thermodynamic studies of molecular interactions in ternary liquid mixtures at 303, 308 and 313 K,” J. Phys. Sci., 20, 097-108, 2009.
  • [96] V. H. Alvarez, S. Mattedi, M. Martin-Pastor, M. Aznar, M. Iglesias, “Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)},” J. Chem. Thermodyn., 43, 997–1010, 2011.
  • [97] K. A. Kurnia, B. Ariwahjoedi, M. I. Abdul Mutalib, T. Murugesan, “Density and excess molar volume of the protic ionic liquid bis(2-hydroxyethyl)ammonium acetate with alcohols,” J. Solution Chem., 40, 470–480, 2011.
  • [98] S. Elangovan, S. Mullainathan, “Intermolecular interaction studies in binary mixture of methyl formate with methanol at various temperatures,” Asian J. Chem., 26(1), 137-141, 2014.
  • [99] A. Nabi, C. Koon Yau, C. G. Jesudason, “Investigation of molecular interactions in binary mixtures (dichloromethane + aliphatic alcohols) at T = (298.15 to 308.15) K: Experimental, ERAS analyses and COSMO-RS predictions,” J. Mol. Liq., 224, 551–561, 2016.
  • [100] C. Gonzalez, J. M. Resa, J. Lanz, M. Iglesias, J. M. Goenaga, “Measurements of density and refractive index of soybean oil + short aliphatic alcohols,” Int. J. Thermophys., 27(5), 1463-1481, 2006c.
  • [101] A. F. S. Santos, M. L. C. J. Moita, J. F. C. C. Silva, I. M. S. Lampreia, “Volumetric and sound speed study of ammonium-based ionic liquid mixtures with ethanol,” J. Chem. Thermodyn., 104, 118-127, 2017.
  • [102] S. F. Babavali, D. Punyaseshudu, K. Narendra, Ch. S. Yesaswi, Ch. Srinivasu, “Study of molecular interactions using excess thermo-acoustical parameters at different temperatures,” J. Mol. Liq., 224A, 47-52, 2016.
  • [103] N. N. Wankhede, M. K. Lande, B. R. Arbad, “Excess molar volumes and viscosity deviations of binary mixtures of 2,4,6-trimethyl-1,3,5-trioxane + ethanol, propan-1-ol, and butan-1-ol at (298.15, 303.15, and 308.15) K,” J. Chem. Eng. Data, 50(3), 969–972, 2005.
  • [104] M. T. Zafarani-Moattar, R. Sadeghi, S. Sarmad, “Measurement and modeling of densities and sound velocities of the systems {poly (propylene glycol)+ methanol,+ ethanol,+ propan-1-ol,+ propan-2-ol and+ butan-1-ol} at T= 298.15 K,” J. Chem. Thermodyn. 38, 257–263, 2006.
  • [105] R. K. Bachu, M. K. Patwari, S. Boodida, S. J. Tangeda, S. Nallani, “Densities, viscosities and speed of sound of binary mixtures of phenylacetonitrile with some aliphatic alcohols at 308.15 K,” Indian J. Chem. 47A, 1026-1031, 2008.
  • [106] B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, F. Sadeghian, “Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, propan-1-ol, or butan-1-ol at several temperatures,” J. Chem. Thermodyn., 41, 1432-1438, 2009.
  • [107] N. Deenadayalu, I. Bahadur, T. Hofman, “Volumetric properties for (ionic liquid + methanol or ethanol or propan-1-ol + nitromethane) at 298.15 K and atmospheric pressure.,” J. Chem. Eng. Data 56, 1682–1686, 2011.
  • [108] M. L. Kijevčanin, E. M. Živković, B. D. Djordjević, I. R. Radović, J. Jovanović, S. P. Šerbanović, “Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + propan-1-ol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination,” J. Chem. Thermodyn. 56, 049-056, 2013.
  • [109] G. Manukonda, V. Ponneri, S. Kasibhatta, S. Sakamuri, “Density, ultrasonic velocity, viscosity and their excess parameters of the binary mixtures of N,N-dimethylaniline+1-alkanols (C3-C5), +2-alkanols (C3-C4), +2-methyl-propan-1-ol, +2-methyl-propan-2-ol at 303.15 K,” Korean J. Chem. Eng., 30(5), 1131-1141, 2013.W PAPER
  • [110] M. B. Divna, M. Z. Emila, S. Š. Slobodan, L. K. Mirjana, “Volumetric and viscometric study of binary systems of ethyl butyrate with alcohols,” J. Chem. Eng. Data, 59, 3677–3690, 2014.
  • [111] M. Umadevi, R. Kesavasamy, K. Rathina, R. Mahalakshmi, “Studies on liquid–liquid interactions of some ternary mixtures by density, viscosity and ultrasonic speed measurements,” J. Mol. Liq., 219, 820-828, 2016.
  • [112] X. Wang, X. Wang, D. Wang, “Volumetric and viscometric properties of ethyl caprate + propan-1-ol, + butan-1-ol, and + pentan-1-ol from 283.15 K to 318.15 K,” J. Mol. Liq., 225, 311-319, 2017.
  • [113] U. Fatima, R. Riyazuddeen, N. Anwar, H. Montes-Campos, L. M. Varela, “Molecular dynamic simulation, molecular interactions and structural properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + butan-1-ol / propan-1-ol mixtures at (298.15-323.15) K and 0.1 M Pa,” Fluid Phase Equilib. 472, 009-021, 2018.
  • [114] M. Sakurai, “Partial molar volumes in aqueous mixtures of nonelectrolytes. II. Isopropyl alcohol,” J. Solution Chem., 17(3), 267-275, 1988.
  • [115] S. -J. Park, K. Fischer, J. Gmehling, “Excess volumes for alkanol + morpholine systems at 298.15 and 308.15 K,” J. Chem. Eng. Data, 39(4), 859-862, 1994.
  • [116] C.-H. Tu, S.-L. Lee, I.-H. Peng, “Excess volumes and viscosities of binary mixtures of aliphatic alcohols (C1−C4) with nitromethane,” J. Chem. Eng. Data, 46(1), 151–155, 2001.
  • [117] C. Gonzalez, J. M. Resa, J. Lanz, M. A. Fanega, “Speed of sound and isentropic compressibility of organic solvents + sunflower oil mixtures at 298.15 K,” J. Am. Oil Chem. Soc., 79, 543–548, 2002.
  • [118] M. M. Alavianmehr, N. Hemmati, H. Ghodrati, “Excess molar volumes, excess thermal expansion coefficients and isentropic compressibility deviations for binary mixtures of phenylmethanol + (butan-1-ol, butan-2-ol, 2-methyl-butan-1-ol and tert-butanol) at T = (298.15-328.15) K and ambient pressure,” Phys. Chem. Liq., 55(1), 85-99, 2016.
  • [119] N. Živković, S. Šerbanović, M. Kijevčanin, E. Živković, “Volumetric properties, viscosities, and refractive indices of the binary systems 1-Butanol + PEG 200, + PEG 400, and + TEGDME,” Int. J. Thermophys., 34(6), 1002–1020. 2013.
  • [120] P. Attri, K. Y. Baik, P. Venkatesu, I. T. Kim, E. H. Choi, “Influence of hydroxyl group position and temperature on thermophysical properties of tetraalkylammonium hydroxide ionic liquids with alcohols,” PLoS ONE, 9(1), 001-014, 2014.
  • [121] N. G. Devi, N. V. N. B. S. Rao, M. R. Sirija, D. Ramachandran, “Study on molecular interactions using thermodynamic excess properties of binary mixture containing propiophenone with propan-1-ol, butan-1-ol and pentan-1-ol at temperatures 303.15, 308.15, 313.15 and 318.15 K,” Asian J. Chem., 30(1), 157-166, 2018.
  • [122] S. Karlapudi , Ch. Prasad , P. Venkateswarlu, I. Bahadur, S. Singh, E. E. Ebenso, “ Molecular interactions of p-chlorotoluene and 1-alkanols at different temperatures: Volumetric, ultrasonic and FT-IR spectroscopic studies,” J. Mol. Liq., 262, 302-309, 2018.
  • [123] J. Troncoso, C. A. Tovar, C. A. Cerdeirina, E. Carballo, L. Romani, “Temperature dependence of densities and speeds of sound of nitromethane + butanol isomers in the range (288.15−308.15) K.,” J. Chem. Eng. Data, 46, 312-316, 2001.
  • [124] J. M. Resa, C. Gonzalez, M. Juez, S. Ortiz de Landaluce, “Density, refractive index and speed of sound for mixtures of ethyl acetate with butan-2-ol and 3-methyl-butan-1-ol and vapor–liquid equilibrium of the ethyl acetate + 3-methyl-butan-1-ol system,” Fluid Phase Equilib., 217, 175-180, 2004.
  • [125] A. Villares, S. Martin, M. Haro, B. Giner, H. Artigas, “Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-propan-1-ol or 2-methyl-propan-2-ol) at the temperatures (298.15 and 313.15) K,” J. Chem. Thermodyn., 36, 1027-1036, 2004.
  • [126] J. M. Resa, J. M. Goenaga, M. Iglesias, “Vapor-liquid equilibria at 101.3 kPa for binary mixtures containing 2-methyl-propan-1-ol + 2-methyl-butan-1-ol, 2-methyl-propan-1-ol + 3-methyl-butan-1-ol, and 2-methyl-propan-1-ol + pentan-1-ol,” J. Chem. Eng. Data, 51, 1892-1895, 2006.
  • [127] J. M. Costello, S. T. Bowden, “The temperature variation of orthobaric density difference in liquid-vapor systems: Alcohols,” Rec. Trav. Chem. Pays-Bas., 77, 036-046, 1958.
  • [128] J. Kenttamaa, M. Martti, E. Tommila, “Some thermodynamic properties of the system t-butanol+ water,” Ann. Acad. Sci. Fenn. A 93, 001-020, 1959.
  • [129] I. Brown, F. Smith, “Volume changes on mixing. I. alcohol + benzene solutions,” Aust. J. Chem. 15, 001-008, 1962.
  • [130] Timmermans, J., 1965, Physico-Chemical Constants of Pure Organic Substances, 2nd Ed., Elsevier.
  • [131] F. Franks, H. T. Smith, “Volumetric properties of alcohols in dilute aqueous solutions,” Trans. Faraday Soc., 64, 2962-2972, 1968.
  • [132] H. Kubota, Y. Tanaka, T. Makita, “Volumetric behavior of pure alcohols and their water mixtures under high pressure,” Int. J. Thermophys. 8, 047-070, 1987.
  • [133] M. Sakurai, “Partial molar volumes in aqueous mixtures of nonelectrolytes. I. t-butyl alcohol,” Bull. Chem. Soc. Jpn. 60. 001-007, 1987.
  • [134] E. S. Kim, K. N. Marsh, “Excess volumes for 2-methyl-propan-2-ol + water at 5 K intervals from 303.15 to 323.15 K,” J. Chem. Eng. Data, 33, 288-292, 1988.
  • [135] P. K. Kipkemboi, A. J. Easteal, Densities and viscosities of binary aqueous mixtures of nonelectrolytes: tert-butyl alcohol and tert-butylamine,” Can. J. Chem. 72, 1937-1945, 1994.
  • [136] F. Rived, M. Roses, E. Bosch, Densities, refractive indices, absolute viscosities, and static dielectric constants of 2-methylpropan-2-ol +hexane, +benzene, +propan-2-ol, +methanol, +ethanol, and +water at 303.2 K,” J. Chem. Eng. Data, 40, 1111-1114, 1995.
  • [137] P. S. Nikam, B. S. Jagdale, A. B. Sawant, m. Hasan, “Densities and viscosities for binary mixtures of benzonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, 2-methylpropan-2-ol at (303.15, 308.15 and 313.15 K),” J. Chem. Eng. Data, 45, 214-218, 2000.
  • [138] R. Gonzalez-Olmos, M. Iglesias, “Study of fuel oxygenates solubility in aqueous media as a function of temperature and tert-butyl alcohol concentration,” Chemosphere, 71 (11), 2098-2105, 2008.
  • [139] R. S. Cataliotti, F. Palombo, M. Paolantoni, P. Sassi, A. Raudino, “Concentration fluctuations and collective properties in liquid systems: Rayleigh-Brillouin spectra of tert-butyl alcohol/2,2’-dimethylbutane liquid mixture,” J. Chem. Phys., 126, 044505-1-044505-10, 2007.
  • [140] G. I. Egorov, D. M. Makarov, “Densities and volume properties of (water + tertbutanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa,” J. Chem. Thermodyn., 43, 430-441, 2011.
  • [141] F. Aman-Pommier, C. Jallut, “Excess specific volume of water+tert-butyl alcohol solvent mixtures: Experimental data, modeling and derived excess partial specific thermodynamic quantities,” Fluid Phase Equilib., 439, 043-066, 2017.
  • [142] J. Ortega, J. Matos, “Estimation of the isobaric expansivities from several equations of molar refraction for some pure organic compounds,” Mater. Chem. Phys., 15, 415–425, 1986.
  • [143] R. Riggio, H. E. Martinez, N. Z. De Salas, “Excess properties for acetylacetone + pentanols systems at 298.15 K,” Can. J. Chem., 70, 2859-2863, 1992.
  • [144] C. Coquelet, A. Valtz, D. Richon, J. C. De la Fuente, “Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283,15 to 333,15 K: a new method for the determination of the density of pure boldine,“ Fluid Phase Equilib., 259, 033-038, 2007.
  • [145] J. Ortega, R. Vreekamp, E. Penco, E. Marrero, “Mixing thermodynamic properties of 1-butyl-4-methylpyridium tetrafluoroborate [b4mpy] [BF4] with water and with an alkan-1-ol (methanol to pentanol),” J. Chem. Thermodyn., 40, 1087-1094, 2008.
  • [146] A. Estrada-Baltazar, G. A. Iglesias-Silva, C. Caballero-Ceron, “Volumetric and transport properties of binary mixtures of n-octane + ethanol, + propan-1-ol, + butan-1-ol and + pentan-1-ol from (293.15 to 323.15) K at atmospheric pressure,” J. Chem. Eng. Data, 58, 3351-3363, 2013.
  • [147] A. Estrada-Baltazar, M. G. Bravo-Sanchez, G. A. Iglesias-Silva, J. F. J. Alvarado, E. Q. Castrejon-Gonzalez, M. Ramos-Estrada, “Densities and viscosities of binary mixtures of n-decane + pentan-1-ol, + 1-hexanol, +1-heptanol at temperatures from 293.15 to 363.15 K and atmospheric pressure,” Chin. J. Chem. Eng., 23, 559-571, 2015.
  • [148] M. Janardhanaiah, S. Gangadhar, V. Govinda, K. Sreenivasulu, P. Venkateswarlu, “Effect of alkanol chain length on excess thermodynamic properties of p-cresol with 1-alkanol (c3-c8) at 298.15, 303.15, 308.15 and 313.15 K ,“ J. Mol. Liq., 211, 169–177, 2015.
  • [149] A. Ali, A. K. Nain, D. Chand, B. Lal, “Volumetric and viscometric studies of molecular interactions in binary N, N-dimethylacetamide + phenylmethanol mixtures at different temperatures,” South African J. Chem. 58, 098–104, 2005a.
  • [150] A. Ali, J. D. Pandey, N. K. Soni, A. K. Nain, B. Lal, D. Chand, “Densities, ultrasonic speeds, viscosities and refractive indices of binary mixtures of benzene with phenylmethanol, benzonitrile, benzol chloride and chlorobenzene at 303.15 K,” Chinese J. Chem., 23(4), 377-385, 2005b.
  • [151] R. Francesconi, A. Bigi, K. Rubini, F. Comelli, “Excess enthalpies, heat capacities, densities, viscosities and refractive indices of dimethyl sulfoxide + three aryl alcohols at 308.15 K and atmospheric pressure,” J. Chem. Eng. Data 50, 1932-1937, 2005.
  • [152] A. Ali, M. Tariq, “Thermodynamic and transport behavior of binary liquid mixtures of phenylmethanol with monocyclic aromatics at 303.15 K,” J. Mol. Liq. 128, 050–055, 2006.
  • [153] C. Alonso-Tristan, J. A. Gonzalez, I. Garcia de la Fuente, J. C. Cobos, “Thermodynamics of mixtures containing aromatic alcohols. 1. Liquid-liquid equilibria for (phenylmethanol+alkane) systems,” J. Chem. Eng. Data, 57, 1186-1191, 2012.
  • [154] L. Venkatramana, R. L. Gardas, K. Sivakumar, R. K. Dayananda, “Thermodynamics of binary mixtures: The effect of substituents in aromatics on their excess properties with phenylmethanol,” Fluid Phase Equilib., 367, 007–021, 2014.
  • [155] H. R. Rafiee, “Volumetric properties for binary and ternary mixtures containing phenylmethanol, ethyl butyrate and diethyl malonate at T=(293.15–313.15) K and P=0.087 MPa,” J. Solution Chem., 46, 663–681, 2017.
  • [156] J. Karunakar, K. D. Reddy, M. V. P. Rao, “Isentropic compressibilities of mixtures of aliphatic alcohols with benzonitrile,” J. Chem. Eng. Data, 27(3), 348–350, 1982.
  • [157] E. Zorebski, M. Gepper-Rybczynska, “Thermodynamic and transport properties of (butan-1-ol + 1,4-butanediol) at temperatures from (298.15 to 318.15) K,” J. Chem. Thermodyn., 42(3), 409-418, 2010.
  • [158] R. Sadeghi, S. Azizpour, “Volumetric, compressibility and viscometric measurements of binary mixtures of poly(vinylpirrolidone) + water, + methanol, + ethanol, + acetonitrile, + propan-1-ol, + propan-2-ol, and + butan-1-ol,” J. Chem. Eng. Data, 56, 240-250, 2011.
  • [159] L. M. Casas, G. Marino, M. Iglesias, B. Orge, J. Tojo, L. Mosteiro, “Excess molar volumes, and changes of isentropic compressibilities of ternary (acetone+methanol+(2-methyl-propan-1-ol or 3-methyl-butan-1-ol)) at 298.15 K,” J. Chem. Thermodyn. 33, 1777-1789, 2001.
  • [160] A. S. Al-Jimaz, J. A. Al-Kandary, A. H. M. Abdul-Latif, “Densities and viscosities for binary mixtures of phenetole with pentan-1-ol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures,” Fluid Phase Equilib., 218, 247-260, 2004.
  • [161] M. S. Al-Tuwaim, K. H. A. E. Al-Khaldi, A. S. Al-Jimaz, A. A. Mohammad, “Comparative study of physico-chemical properties of binary mixtures of N, N-dimethylformamide with 1-alkanols at different temperatures,” J. Chem. Thermodyn. 48, 039-047, 2012.
  • [162] H. Kumar, S. Sharma, “Acoustical studies of binary liquid mixtures of cyclopentane with 1-alkanol at different temperatures and different approaches for ideal mixing laws,” J. Solut. Chem., 39, 967-986, 2010.
  • [163] M. S. Reddy, I. Khan, K. T. S. S. Raju, P. Sureshd, B. H. Babu, “The study of molecular interactions in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate + pentan-1-ol from density, speed of sound and refractive index measurements,” J. Chem. Thermodyn. 98, 298-308, 2016.
  • [164] A. Ali, A. K. Nain, D. Chand, R. Ahmad, “Volumetric, ultrasonic, and viscosimetric studies of molecular interactions in binary mixtures of aromatic + aliphatic alcohols at different temperatures,” Phys. Chem. Liq. 43, 205-224, 2005c.
Yıl 2020, Cilt: 23 Sayı: 3, 176 - 195, 27.08.2020
https://doi.org/10.5541/ijot.720015

Öz

Proje Numarası

438376/2018-8 and 313601/2019-4

Kaynakça

  • [1] Valsaraj, K. T., 2000. Elements of Environmental Engineering: Thermodynamics and Kinetics. Lewis Publishers.
  • [2] Schneiter, R. W., 2012. Environmental Enginnering Solved Problems. Professional Publications, Inc.
  • [3] Wright, R. T., 2016. Environmental Science: Towards a Sustainable Future. Pearson Publisher.
  • [4] P. Tundo, P. Anastas, D. S. Black, J. Breen, T., Collins, S. Memoli, J. Miyamoto, M. Polyakoff, W. Tumas, “Synthetic pathways and processes in green chemistry: Introductory overview,” Pure Appl. Chem., 72, 1207-1228, 2000.
  • [5] P. Anastas, N. Eghbali, “Green Chemistry: Principles and practice,” Chem. Soc. Rev., 39, 301-312, 2010.
  • [6] G. Ibram, “Conversion of carbon dioxide into methanol - A potential liquid fuel: Fundamental challenges and opportunities (a review),” Renew. Sust. Energ. Rev., 31, 221–257, 2014.
  • [7] Phillips, R., 2014. Alcohol: A History. University of North Carolina Press.
  • [8] E. Nova, G. C. Baccan, A. Veses, B. Zapatera, A. Marcos, “Potential health benefits of moderate alcohol consumption: current perspectives in research,” Proc. Nutr. Soc., 71(2), 307-315, 2012.
  • [9] M. Koç, Y. Sekmen, T. Topgül, H. S. Yücesu, “The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine,” Renew. Energ., 34(10), 2101-2106, 2009.
  • [10] V. R. Surisetty, A. K. Dalai, J. Kozinski, “Alcohols as alternative fuels: An overview,” Appl. Catal. A-Gen., 404 (1-2), 1-11, 2011.
  • [11] M. B. Çelik, B. Özdalyan, F. Alkan, “The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine,” Fuel, 90(4), 1591-1598, 2011.
  • [12] Ch. Jin, M. Yao, H. Liu, Ch. F. Lee, J. Ji, “Progress in the production and application of n-butanol as a biofuel,” Renew. Sust. Energ. Rev., 15(8), 4080-4106, 2011.
  • [13] J. Campos-Fernández, J. M. Arnal, J. Gómez, M. P. Dorado, “A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine,” Appl. Energ., 95, 267-275, 2012.
  • [14] S. Kumar, J. H. Cho, J. P. I. Moon, “Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines,” Renew. Sust. Energ. Rev., 22, 46-72, 2013.
  • [15] B. M. Masum, H. H. Masjuki, M. A. Kalam, S. M. Palash, M. A. Wakil, S. Imtenan, “Tailoring the key fuel properties using different alcohols (C2–C6) and their evaluation in gasoline engine,” Energ. Convers. Managem., 88, 382-390, 2014.
  • [16] M. K. Balki, C. Sayin, M. Canakci, “The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine,” Fuel, 115, 901-906, 2014.
  • [17] A. Uyumaz, “An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures,” Energ. Convers. Managem., 98(1), 199-207, 2015.
  • [18] W. Tutak, K. Lukács, S. Szwaja, Á. Bereczky, “Alcohol–diesel fuel combustion in the compression ignition engine,” Fuel, 154, 196-206, 2015.
  • [19] A. Elfasakhany, “Experimental study of dual n-butanol and iso-butanol additives on spark-ignition engine performance and emissions,” Fuel, 163, 166-174, 2016.
  • [20] I. M. Yusri, R. Mamat, G. Najafi, A. Razman, Omar I. Awad, W. H. Azmi, W. F. W. Ishak, A. I. M. Shaiful, “Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions,” Renew. Sust. Energ. Rev., 77, 169-181, 2017.
  • [21] J. T. Wang, S. Wasmus, R. F. Savinell, “Evaluation of ethanol, propan-1-ol and propan-2-ol in a direct oxidation polymer-electrolyte full cell: a real-time mass spectrometry study,” J. Electrochem. Soc., 142, 4218-4224, 1995.
  • [22] C. Lamy, A. Lima, V. L. Rhun, C. Coutanceau, J. M. L´eger, “Recent advances in the development of direct alcohol fuel cells (DAFC) J. Power Sources, 105, 283-296, 2002.
  • [23] A. Anis, S. M. Al-Zahrani, F. A. Abd El Aleem, “Optimization of direct propan-2-ol fuel cell performance using statistical design of experiments approach,” Int. J. Electrochem. Sci., 7, 6221-6233, 2012.
  • [24] V. Hönig, M. Kotek, J. Mařík, “Use of butanol as a fuel for internal combustion engines,“ Agron. Res., 12(2), 333-340, 2014.
  • [25] M. R. Ladish, “Fermentation-derived butanol and scenarios for its uses in energy-related applications,” Enzyme Microb. Tech., 13(3), 280-283, 1991.
  • [26] S. Liu, N. Qureshi, S. R. Hughes, “Progress and perspectives on improving butanol tolerance,” World J. Microbiol. Biotechnol., 33, 51-55, 2017.
  • [27] Q. Zhang, X. Hu, Z. Li, B. Liu, “Combustion and emission characteristics of diesel engines using diesel, DMF/diesel, and n-pentanol/diesel fuel blends,” J. Energ. Eng-ASCE, 144(3), 2018.
  • [28] V. Rajasekar, “Experimental investigations to study the effect of butanol and pentanol addition in a jatropha oil methyl ester fuelled compression ignition engine,” J. Chem. Pharm. Sci., 9(1), 665-668, 2016
  • [29] D. Belsito, D. Bickers, M. Bruze, P. Calow , H. Greim, J. M. Hanifin, A. E. Rogers, J. H. Saurat, I. G. Sipes, H. Tagami, “A safety assessment of branched chain saturated alcohols when used as fragrance ingredients,” Food Chem. Toxicol., 48, S1-S46, 2010.
  • [30] N. Yilmaz, E. Ileri, A. Atmanli, “Performance of biodiesel/higher alcohols blends in a diesel engine,” Energy Res. J., 40(8), 1134-1143, 2016.
  • [31] M. Vinod Babu, K. Madhu Murthy, G. Amba Prasad Rao, “Butanol and pentanol: The promising biofuels for CI engines - A review,” Energy Res. J., 78, 1068-1088, 2017.
  • [32] O. Bortolini, S. Campestrini, F. Di Furia, G. Modena, “Metal catalysis in oxidation by peroxides. 27. Anionic molybdenum-picolinate N-oxido-peroxo complex: an effective oxidant of primary and secondary alcohols in nonpolar solvents,” J. Organic Chem., 52, 5467-5469, 1987.
  • [33] Hudlicky, M., 1990. Oxidations in Organic Chemistry. ACS, Washington DC.
  • [34] Kirk-Othmer, 1978. Encyclopedia of Chemical Technology, 3rd Edition, Wiley-New York.
  • [35] D. L. Dyer, A. Shinder, F. Shinder, “Alcohol-free instant hand sanitizer reduces elementary school illness absenteeism,” Fam. Med., 32(9), 633-638, 2000.
  • [36] E. L. Larson, J. Cimiotti, J. Haas, M. Parides, P. Della-Latta, L. Saiman, “Effect of antiseptic handwashing vs alcohol sanitizer on health care–associated infections in neonatal intensive care units,” Arch. Pediatr. Adolesc. Med., 159, 378-383, 2005.
  • [37] M. S. Reichel, “Efficacy of surface disinfectant cleaners against emerging highly resistant gram -negative bacteria,” BMC Infect. Dis., 292(14), 1-8, 2014.
  • [38] A. Dixit, P. Pandey, R. Mahajan, D. C. Dhasmana, “Alcohol based hand sanitizers: Assurance and apprehensions revisited,” Res. J. Pharm. Biol. Chem. Sci., 5(1), 558-563, 2014.
  • [39] M. Iglesias, B. Orge, J. Tojo, “Densities, refractive indices, and derived excess properties of {x1 CH3COCH3 + x2 CH3OH + (1-x1-x2) CH3CH(OH)CH3} at the temperature 298.15 K,” J. Chem. Thermodyn., 27(11), 1161-1167, 1995.
  • [40] M. Iglesias, B. Orge, J. Tojo, “Densities and refractive indices for acetone + methanol + propan-1-ol at 298.15 K,” J. Chem. Eng. Data, 41(2), 218-221, 1996.
  • [41] M. Iglesias, G. Marino, B. Orge, M. M. Piñeiro, J. Tojo, “Liquid-liquid equilibria, and thermodynamic properties of the system methyl acetate + methanol + water at 298.15 K,” Phys. Chem. Liq., 37(3), 193-213, 1999.
  • [42] M. Iglesias, R. Gonzalez-Olmos, “Analysis of methanol extraction from aqueous solution by n-hexane: Equilibrium diagrams as a function of temperature,“ J. Mol. Liq., 130(1-3), 52-58, 2007.
  • [43] V. H. Alvarez, S. Mattedi, M. Iglesias, R. Gonzalez-Olmos, J.M. Resa, “Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa,” Phys. Chem. Liq., 49(1), 052-071, 2011.
  • [44] R. S. Andrade, M. Iglesias, “Fluid phase topology of benzene + cyclohexane + propan-1-ol at 101.3 kPa,” Int. J. Thermophys., 36(7), 1498-1518, 2015.
  • [45] J. Kulhavy, R. S. Andrade, S. Barros, M. Iglesias, “Influence of temperature on thermodynamics of protic ionic liquid 2-hydroxy diethylammonium lactate (2-HDEAL) + short hydroxylic solvents,” J. Mol. Liq., 213, 92-106, 2016.
  • [46] C. Ravazzano, K. Lima, R. S. Andrade, M. Iglesias, “Volumetric and acoustic study of a short protic ionic liquids binary mixture: 2-hydroxy ethylammonium formate (2-HEAF) + 2-hydroxy ethylammonium acetate (2-HEAA),” Int. J. Thermodyn., 19(4), 244-250, 2016.
  • [47] R. S. Andrade, C. Gonzalez, M. Iglesias, “Changes of refractive indices for ethanol+water+(ethyl acetate or pentan-1-ol) at 298.15 K,” Int. J. Thermodyn., 20(3), 174-181, 2017.
  • [48] R. S. Andrade, D. Torres, F. R. Ribeiro, B. G. Chiari-Andreó, J. A. Oshiro-Junior, M. Iglesias, “Sustainable cotton dyeing in nonaqueous medium applying protic ionic liquids,” ACS Sustain. Chem. Eng., 5(10), 8756-8765, 2017.
  • [49] S. Barros, R. S. Andrade, M. Iglesias, “Effect of temperature on thermodynamic properties of protic ionic liquid 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvents,” Int. J. Thermodyn., 21(2), 70-80, 2018.
  • [50] S. Barros, R. S. Andrade, M. Iglesias, “Thermodynamics of ethanol+water+propan-2-ol mixture at the range of temperature 288.15-323.15 K,” Int. J. Thermodyn., 21(2), 82-92, 2018.
  • [51] A. Mchaweh, A. Alsaygh, K. Nasrifar, M. Moshfeghian, “A simplified method for calculating saturated liquid densities,” Fluid Phase Equilib., 224, 157-167, 2004.
  • [52] H. G. Rackett, “Equation of state for saturated liquids,” J. Chem. Eng. Data, 15, 514-517, 1970.
  • [53] C. F. Spencer, R. P. Danner, “Improved equation for prediction of saturated liquid density,” J. Chem. Eng. Data, 17(2), 236-241, 1972.
  • [54] M. L. Bradford, G. Thodos, “Densities of hydrocarbons in their saturated vapor and liquid states,” Can. J. Chem. Eng., 46(4), 277-283, 1968.
  • [55] L. Riedel, “Die Flüssigkeitsdichte im Sättigungszustand. Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Teil II,” Chemie-Ing-Tech, 26, 259-264, 1954.
  • [56] G. Narsimhan, “On the derivation and application of a new vapor pressure equation,” Can. J. Chem. Eng., 45(4), 230-233, 1967.
  • [57] L. C. Yen, S. S. A. Woods, “A generalized equation for computer calculation of liquid densities,” AIChE J., 12(1), 95-99, 1966.
  • [58] S.W. Campbell, G. Thodos, “Prediction of saturated liquid densities and critical volumes for polar and nonpolar substances,” J. Chem. Eng. Data, 30, 102-111, 1985.
  • [59] V. L. Bhirud, “Saturated liquid densities of normal fluids,” AIChE J., 24(6), 1127- 1131, 1978.
  • [60] W. Schaffs, “Zur bestimmung von molekülradien organischer flüssigkeiten aus schallgeschwindigkeit sund dichte, “ Z. Phys., 114, 110-115, 1975.
  • [61] Dalbert, T. E., Danner, R. P., 1989. Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation. Taylor and Francis.
  • [62] E. Vercher, A. V. Orchilles, P. J. Miguel, A. Martinez-Andreu, “Volumetric and ultrasonic studies of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid with methanol, ethanol, propan-1-ol, and water at several temperatures,” J. Chem. Eng. Data, 52(4), 1468-1482, 2007.
  • [63] N. Munster, C. A. Planck, W.L.S. Laukhuf, P. M. Christopher, “Vapor-liquid equilibria of the ternary system methylborate-methyl alcohol-benzene,” J. Chem. Eng. Data, 29, 170-178, 1984.
  • [64] Y. S. Won, D. K. Chung, a. F. Mills, “Density, viscosity, surface tension, and carbon dioxide solubility and diffusivity of methanol, ethanol, aqueous propanol and aqueous ethylene glycol at 25 ºC,” J. Chem. Eng. Data., 26, 140-141, 1981.
  • [65] J. M. Goenaga A. Gayol, R. G. Concha, M. Iglesias, J. M. Resa, “Effect of temperature on thermophysical properties of ethanol + aliphatic alcohols (C4-C5) mixtures,” Mon. Chem., 138, 403-436, 2007.
  • [66] P. N. Sibiya, N. Deenadayalu, “Excess molar volumes and partial molar volumes of binary systems (ionic liquid + methanol or ethanol or propan-1-ol) at T = (298.15, 303.15 and 313.15) K,” S. Afr. J. Chem., 62, 20–25, 2009.
  • [67] P. Bhanuprakash, N. V. V. Jyothi, C. Narasimharao, M. Raveendra, K. Sivakumar, “Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents,” J. Chem. Thermodyn., 122, 113-124, 2018.
  • [68] A. A. Rostami, M. J. Chaichi, M. Sharifi, “Densities, viscosities, and excess Gibbs energy of activation for viscous flow, for binary mixtures of dimethyl phthalate (DMP) with pentan-1-ol, butan-1-ol, and propan-1-ol at two temperatures,” Mon. Chem. 138, 967-971, 2007.
  • [69] Riddick, J. A., Bunger, W. B., Sakano, T. K., 1986. Organic Solvents, Willey.
  • [70] I. C. Hwang, J. I. Kim, S. J. Park, S. J. In, “Liquid-liquid equilibrium for ternary systems of propyl vinyl ether + C3 or C4 alcohols + water at 298.15 K and excess molar enthalpies for ternary and constituent binary systems of propyl vinyl ether + ethanol + isooctane at 303.15 K,” J. Chem. Eng. Data, 53, 475-480, 2008.
  • [71] T. M. Aminabhavi, B. Gopalakrishna, “Densities, viscosities, and refractive indices of bis(2-methoxyethyl) ether + cyclohexane or + 1,2,3,4-tetrahydronaphthalene and of 2-ethoxyethanol + propan-1-ol, + propan-2-ol, or + butan-1-ol,” J. Chem. Eng. Data, 40(2), 462-467, 1995.
  • [72] B. Gonzalez, A. Dominguez, J. Tojo, “Viscosity, density and speed of sound of methylcyclopentane with primary and secondary alcohols at T=(293.15, 298.15 and 303.15) K,” J. Chem. Thermodyn., 38, 1172-1185, 2006a.
  • [73] L. Mussari, M. Postigo, C. Lafuente, F. M. Royo, J. S. Urieta, “Viscosity measurements for the binary mixtures of 1,2-dichloroethane or 1,2-dibromoethane with isomeric butanols,” J. Chem. Eng. Data, 45, 086-091, 2000.
  • [74] M. M. Alavianmehr, M. Sharifi, M. N. S. Rad, “Measurement and modeling of volumetric properties and sound speeds of several mixtures of alcohol liquids containing propan-1-ol and propan-2-ol at T=(298.15–323.15) K and ambient pressure,” Fluid Phase Equilib., 376, 181-192, 2014.
  • [75] R. K. Shukla, A. Kumar, N. Awasthi, U. Srivastava, K. Srivastava, “Speed of sound and isentropic compressibility of benzonitrile, chlorobenzene, benzyl chloride and phenylmethanol with benzene from various models at temperature range 298.15–313.15 K,” Arabian J. Chem., 10(7), 895-905, 2017.
  • [76] S. Singh, M. Aznar, N. Deenadayalu, “Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K,” J. Chem. Thermodyn., 57, 238-247, 2013.
  • [77] B. Gonzalez, A. Domínguez, J. Tojo, “Dynamic viscosities, densities, and speed of sound and derived properties of the binary systems acetic acid with water, methanol, ethanol, ethyl acetate and methyl acetate at T = (293.15, 298.15, and 303.15) K at atmospheric pressure,” J. Chem. Eng. Data, 49, 1590-1596, 2004.
  • [78] K. M. I. Aralaguppi, J. G. Baragi, “Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-propan-1-ol, or 3-methyl-butan-1-ol at T=(298.15, 303.15, and 308.15 K),” J. Chem. Thermodyn., 38, 434-442, 2006.
  • [79] M. M. Papari, H. Ghodrati, F. Fadaei, R. Sadeghi, S. Behrouz, M. N. Soltani Rad, J. Moghadasi, “Volumetric and ultrasonic study of mixtures of 2-phenylethanol with butan-1-ol, butan-2-ol, and 2-methyl-butan-1-ol at T=(298.15–323.15) K and atmospheric pressure: Measurement and prediction,” J. Mol. Liq., 180, 121-128, 2013.
  • [80] G. P. Dubey, S. Rani, P. Kaur, “Studies of mixing properties of binary systems of di-n-butylamine with alkanols at T=(293.15, 298.15, 303.15, 308.15 and 313.15) K,” J. Mol. Liq., 234, 335-341, 2017.
  • [81] L. C. Lynnworth, “Industrial applications of ultrasound. A review. II. Measurements, tests, and process control using low intensity ultrasound,” IEEE Trans. Sonics Ultrasonics., 54-22(2), 071-101, 1975.
  • [82] DIADEM PUBLIC 1.2.0, 2000. The DIPPR Information and Data Evaluation Manager.
  • [83] A. Bondi, “van der Waals volumes and radii,” J. Phys. Chem., 68, 441-451, 1964.
  • [84] American Institute of Physics Handbook, 1972. 3rd ed., McGraw-Hill.
  • [85] R. C. Wilhoit, B. J. Zwolinski, American Chemical Society, American Institute of Physics and United States. National Bureau of Standards Physical and thermodynamic properties of aliphatic alcohols. American Chemical Society, [New York], 1973.
  • [86] Lange, N. A., 1973. Handbook of Chemistry, 11th ed., McGraw-Hill.
  • [87] Weast, R. C., 1974. Handbook of Chemistry and Physics, 55th ed., Chemical Rubber Publishing Co.
  • [88] J. L. Hales, J. H. Ellender, “Liquid densities from 293 to 490 K of nine aliphatic alcohols,” J. Chem. Thermodyn., 8(12), 1177-1184, 1976.
  • [89] M. Diaz-Peña, G. Tardajos, “Isothermal compressibilities of n-1-alcohols from methanol to 1-dodecanol at 298.15, 308.15, 318.15, and 333.15 K,” J. Chem. Thermodyn., 11, 441-445, 1979.
  • [90] J. Ortega, “Densities and refractive indices of pure alcohols as a function of temperature,” J. Chem. Eng. Data, 27, 312-317, 1982.
  • [91] M. A. Rauf, G. H. Stewart, Farhataziz, “Viscosities and densities of binary mixtures of 1-alkanol from 15 to 55 ºC,” J. Chem. Eng. Data, 28, 324-328, 1983.
  • [92] B. Garcia, C. A. Herrera, J. M. Leal, “Thermodynamics of 2-pyrrolidinone + n-alkanol binary mixtures: activation properties,” Thermochim. Acta, 180, 159-167, 1991.
  • [93] S. M. Pereira, M. A. Rivas, J. L. Legido, T. P. Iglesias, “Speeds of sound, densities, isentropic compressibilities of the system (methanol + polyethylene glycol dimethyl ether 250) at temperatures from 293.15 to 333.15 K,” J. Chem. Thermodyn., 35(3), 383-391, 2003.
  • [94] E. J. Gonzalez, L. Alonso, A. Domínguez, “Physical properties of binary mixtures of the ionic liquid 1-methyl-3-octylimidazolium chloride with methanol, ethanol, and propan-1-ol at T = (298.15, 313.15, and 328.15) K and at P = 0.1 MPa,” J. Chem. Eng. Data, 51(4), 1446–1452, 2006b.
  • [95] A. N. Kannappan, S. Thirumaran, R. Palani, “Volumetric and thermodynamic studies of molecular interactions in ternary liquid mixtures at 303, 308 and 313 K,” J. Phys. Sci., 20, 097-108, 2009.
  • [96] V. H. Alvarez, S. Mattedi, M. Martin-Pastor, M. Aznar, M. Iglesias, “Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)},” J. Chem. Thermodyn., 43, 997–1010, 2011.
  • [97] K. A. Kurnia, B. Ariwahjoedi, M. I. Abdul Mutalib, T. Murugesan, “Density and excess molar volume of the protic ionic liquid bis(2-hydroxyethyl)ammonium acetate with alcohols,” J. Solution Chem., 40, 470–480, 2011.
  • [98] S. Elangovan, S. Mullainathan, “Intermolecular interaction studies in binary mixture of methyl formate with methanol at various temperatures,” Asian J. Chem., 26(1), 137-141, 2014.
  • [99] A. Nabi, C. Koon Yau, C. G. Jesudason, “Investigation of molecular interactions in binary mixtures (dichloromethane + aliphatic alcohols) at T = (298.15 to 308.15) K: Experimental, ERAS analyses and COSMO-RS predictions,” J. Mol. Liq., 224, 551–561, 2016.
  • [100] C. Gonzalez, J. M. Resa, J. Lanz, M. Iglesias, J. M. Goenaga, “Measurements of density and refractive index of soybean oil + short aliphatic alcohols,” Int. J. Thermophys., 27(5), 1463-1481, 2006c.
  • [101] A. F. S. Santos, M. L. C. J. Moita, J. F. C. C. Silva, I. M. S. Lampreia, “Volumetric and sound speed study of ammonium-based ionic liquid mixtures with ethanol,” J. Chem. Thermodyn., 104, 118-127, 2017.
  • [102] S. F. Babavali, D. Punyaseshudu, K. Narendra, Ch. S. Yesaswi, Ch. Srinivasu, “Study of molecular interactions using excess thermo-acoustical parameters at different temperatures,” J. Mol. Liq., 224A, 47-52, 2016.
  • [103] N. N. Wankhede, M. K. Lande, B. R. Arbad, “Excess molar volumes and viscosity deviations of binary mixtures of 2,4,6-trimethyl-1,3,5-trioxane + ethanol, propan-1-ol, and butan-1-ol at (298.15, 303.15, and 308.15) K,” J. Chem. Eng. Data, 50(3), 969–972, 2005.
  • [104] M. T. Zafarani-Moattar, R. Sadeghi, S. Sarmad, “Measurement and modeling of densities and sound velocities of the systems {poly (propylene glycol)+ methanol,+ ethanol,+ propan-1-ol,+ propan-2-ol and+ butan-1-ol} at T= 298.15 K,” J. Chem. Thermodyn. 38, 257–263, 2006.
  • [105] R. K. Bachu, M. K. Patwari, S. Boodida, S. J. Tangeda, S. Nallani, “Densities, viscosities and speed of sound of binary mixtures of phenylacetonitrile with some aliphatic alcohols at 308.15 K,” Indian J. Chem. 47A, 1026-1031, 2008.
  • [106] B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, F. Sadeghian, “Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, propan-1-ol, or butan-1-ol at several temperatures,” J. Chem. Thermodyn., 41, 1432-1438, 2009.
  • [107] N. Deenadayalu, I. Bahadur, T. Hofman, “Volumetric properties for (ionic liquid + methanol or ethanol or propan-1-ol + nitromethane) at 298.15 K and atmospheric pressure.,” J. Chem. Eng. Data 56, 1682–1686, 2011.
  • [108] M. L. Kijevčanin, E. M. Živković, B. D. Djordjević, I. R. Radović, J. Jovanović, S. P. Šerbanović, “Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + propan-1-ol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination,” J. Chem. Thermodyn. 56, 049-056, 2013.
  • [109] G. Manukonda, V. Ponneri, S. Kasibhatta, S. Sakamuri, “Density, ultrasonic velocity, viscosity and their excess parameters of the binary mixtures of N,N-dimethylaniline+1-alkanols (C3-C5), +2-alkanols (C3-C4), +2-methyl-propan-1-ol, +2-methyl-propan-2-ol at 303.15 K,” Korean J. Chem. Eng., 30(5), 1131-1141, 2013.W PAPER
  • [110] M. B. Divna, M. Z. Emila, S. Š. Slobodan, L. K. Mirjana, “Volumetric and viscometric study of binary systems of ethyl butyrate with alcohols,” J. Chem. Eng. Data, 59, 3677–3690, 2014.
  • [111] M. Umadevi, R. Kesavasamy, K. Rathina, R. Mahalakshmi, “Studies on liquid–liquid interactions of some ternary mixtures by density, viscosity and ultrasonic speed measurements,” J. Mol. Liq., 219, 820-828, 2016.
  • [112] X. Wang, X. Wang, D. Wang, “Volumetric and viscometric properties of ethyl caprate + propan-1-ol, + butan-1-ol, and + pentan-1-ol from 283.15 K to 318.15 K,” J. Mol. Liq., 225, 311-319, 2017.
  • [113] U. Fatima, R. Riyazuddeen, N. Anwar, H. Montes-Campos, L. M. Varela, “Molecular dynamic simulation, molecular interactions and structural properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + butan-1-ol / propan-1-ol mixtures at (298.15-323.15) K and 0.1 M Pa,” Fluid Phase Equilib. 472, 009-021, 2018.
  • [114] M. Sakurai, “Partial molar volumes in aqueous mixtures of nonelectrolytes. II. Isopropyl alcohol,” J. Solution Chem., 17(3), 267-275, 1988.
  • [115] S. -J. Park, K. Fischer, J. Gmehling, “Excess volumes for alkanol + morpholine systems at 298.15 and 308.15 K,” J. Chem. Eng. Data, 39(4), 859-862, 1994.
  • [116] C.-H. Tu, S.-L. Lee, I.-H. Peng, “Excess volumes and viscosities of binary mixtures of aliphatic alcohols (C1−C4) with nitromethane,” J. Chem. Eng. Data, 46(1), 151–155, 2001.
  • [117] C. Gonzalez, J. M. Resa, J. Lanz, M. A. Fanega, “Speed of sound and isentropic compressibility of organic solvents + sunflower oil mixtures at 298.15 K,” J. Am. Oil Chem. Soc., 79, 543–548, 2002.
  • [118] M. M. Alavianmehr, N. Hemmati, H. Ghodrati, “Excess molar volumes, excess thermal expansion coefficients and isentropic compressibility deviations for binary mixtures of phenylmethanol + (butan-1-ol, butan-2-ol, 2-methyl-butan-1-ol and tert-butanol) at T = (298.15-328.15) K and ambient pressure,” Phys. Chem. Liq., 55(1), 85-99, 2016.
  • [119] N. Živković, S. Šerbanović, M. Kijevčanin, E. Živković, “Volumetric properties, viscosities, and refractive indices of the binary systems 1-Butanol + PEG 200, + PEG 400, and + TEGDME,” Int. J. Thermophys., 34(6), 1002–1020. 2013.
  • [120] P. Attri, K. Y. Baik, P. Venkatesu, I. T. Kim, E. H. Choi, “Influence of hydroxyl group position and temperature on thermophysical properties of tetraalkylammonium hydroxide ionic liquids with alcohols,” PLoS ONE, 9(1), 001-014, 2014.
  • [121] N. G. Devi, N. V. N. B. S. Rao, M. R. Sirija, D. Ramachandran, “Study on molecular interactions using thermodynamic excess properties of binary mixture containing propiophenone with propan-1-ol, butan-1-ol and pentan-1-ol at temperatures 303.15, 308.15, 313.15 and 318.15 K,” Asian J. Chem., 30(1), 157-166, 2018.
  • [122] S. Karlapudi , Ch. Prasad , P. Venkateswarlu, I. Bahadur, S. Singh, E. E. Ebenso, “ Molecular interactions of p-chlorotoluene and 1-alkanols at different temperatures: Volumetric, ultrasonic and FT-IR spectroscopic studies,” J. Mol. Liq., 262, 302-309, 2018.
  • [123] J. Troncoso, C. A. Tovar, C. A. Cerdeirina, E. Carballo, L. Romani, “Temperature dependence of densities and speeds of sound of nitromethane + butanol isomers in the range (288.15−308.15) K.,” J. Chem. Eng. Data, 46, 312-316, 2001.
  • [124] J. M. Resa, C. Gonzalez, M. Juez, S. Ortiz de Landaluce, “Density, refractive index and speed of sound for mixtures of ethyl acetate with butan-2-ol and 3-methyl-butan-1-ol and vapor–liquid equilibrium of the ethyl acetate + 3-methyl-butan-1-ol system,” Fluid Phase Equilib., 217, 175-180, 2004.
  • [125] A. Villares, S. Martin, M. Haro, B. Giner, H. Artigas, “Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-propan-1-ol or 2-methyl-propan-2-ol) at the temperatures (298.15 and 313.15) K,” J. Chem. Thermodyn., 36, 1027-1036, 2004.
  • [126] J. M. Resa, J. M. Goenaga, M. Iglesias, “Vapor-liquid equilibria at 101.3 kPa for binary mixtures containing 2-methyl-propan-1-ol + 2-methyl-butan-1-ol, 2-methyl-propan-1-ol + 3-methyl-butan-1-ol, and 2-methyl-propan-1-ol + pentan-1-ol,” J. Chem. Eng. Data, 51, 1892-1895, 2006.
  • [127] J. M. Costello, S. T. Bowden, “The temperature variation of orthobaric density difference in liquid-vapor systems: Alcohols,” Rec. Trav. Chem. Pays-Bas., 77, 036-046, 1958.
  • [128] J. Kenttamaa, M. Martti, E. Tommila, “Some thermodynamic properties of the system t-butanol+ water,” Ann. Acad. Sci. Fenn. A 93, 001-020, 1959.
  • [129] I. Brown, F. Smith, “Volume changes on mixing. I. alcohol + benzene solutions,” Aust. J. Chem. 15, 001-008, 1962.
  • [130] Timmermans, J., 1965, Physico-Chemical Constants of Pure Organic Substances, 2nd Ed., Elsevier.
  • [131] F. Franks, H. T. Smith, “Volumetric properties of alcohols in dilute aqueous solutions,” Trans. Faraday Soc., 64, 2962-2972, 1968.
  • [132] H. Kubota, Y. Tanaka, T. Makita, “Volumetric behavior of pure alcohols and their water mixtures under high pressure,” Int. J. Thermophys. 8, 047-070, 1987.
  • [133] M. Sakurai, “Partial molar volumes in aqueous mixtures of nonelectrolytes. I. t-butyl alcohol,” Bull. Chem. Soc. Jpn. 60. 001-007, 1987.
  • [134] E. S. Kim, K. N. Marsh, “Excess volumes for 2-methyl-propan-2-ol + water at 5 K intervals from 303.15 to 323.15 K,” J. Chem. Eng. Data, 33, 288-292, 1988.
  • [135] P. K. Kipkemboi, A. J. Easteal, Densities and viscosities of binary aqueous mixtures of nonelectrolytes: tert-butyl alcohol and tert-butylamine,” Can. J. Chem. 72, 1937-1945, 1994.
  • [136] F. Rived, M. Roses, E. Bosch, Densities, refractive indices, absolute viscosities, and static dielectric constants of 2-methylpropan-2-ol +hexane, +benzene, +propan-2-ol, +methanol, +ethanol, and +water at 303.2 K,” J. Chem. Eng. Data, 40, 1111-1114, 1995.
  • [137] P. S. Nikam, B. S. Jagdale, A. B. Sawant, m. Hasan, “Densities and viscosities for binary mixtures of benzonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, 2-methylpropan-2-ol at (303.15, 308.15 and 313.15 K),” J. Chem. Eng. Data, 45, 214-218, 2000.
  • [138] R. Gonzalez-Olmos, M. Iglesias, “Study of fuel oxygenates solubility in aqueous media as a function of temperature and tert-butyl alcohol concentration,” Chemosphere, 71 (11), 2098-2105, 2008.
  • [139] R. S. Cataliotti, F. Palombo, M. Paolantoni, P. Sassi, A. Raudino, “Concentration fluctuations and collective properties in liquid systems: Rayleigh-Brillouin spectra of tert-butyl alcohol/2,2’-dimethylbutane liquid mixture,” J. Chem. Phys., 126, 044505-1-044505-10, 2007.
  • [140] G. I. Egorov, D. M. Makarov, “Densities and volume properties of (water + tertbutanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa,” J. Chem. Thermodyn., 43, 430-441, 2011.
  • [141] F. Aman-Pommier, C. Jallut, “Excess specific volume of water+tert-butyl alcohol solvent mixtures: Experimental data, modeling and derived excess partial specific thermodynamic quantities,” Fluid Phase Equilib., 439, 043-066, 2017.
  • [142] J. Ortega, J. Matos, “Estimation of the isobaric expansivities from several equations of molar refraction for some pure organic compounds,” Mater. Chem. Phys., 15, 415–425, 1986.
  • [143] R. Riggio, H. E. Martinez, N. Z. De Salas, “Excess properties for acetylacetone + pentanols systems at 298.15 K,” Can. J. Chem., 70, 2859-2863, 1992.
  • [144] C. Coquelet, A. Valtz, D. Richon, J. C. De la Fuente, “Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283,15 to 333,15 K: a new method for the determination of the density of pure boldine,“ Fluid Phase Equilib., 259, 033-038, 2007.
  • [145] J. Ortega, R. Vreekamp, E. Penco, E. Marrero, “Mixing thermodynamic properties of 1-butyl-4-methylpyridium tetrafluoroborate [b4mpy] [BF4] with water and with an alkan-1-ol (methanol to pentanol),” J. Chem. Thermodyn., 40, 1087-1094, 2008.
  • [146] A. Estrada-Baltazar, G. A. Iglesias-Silva, C. Caballero-Ceron, “Volumetric and transport properties of binary mixtures of n-octane + ethanol, + propan-1-ol, + butan-1-ol and + pentan-1-ol from (293.15 to 323.15) K at atmospheric pressure,” J. Chem. Eng. Data, 58, 3351-3363, 2013.
  • [147] A. Estrada-Baltazar, M. G. Bravo-Sanchez, G. A. Iglesias-Silva, J. F. J. Alvarado, E. Q. Castrejon-Gonzalez, M. Ramos-Estrada, “Densities and viscosities of binary mixtures of n-decane + pentan-1-ol, + 1-hexanol, +1-heptanol at temperatures from 293.15 to 363.15 K and atmospheric pressure,” Chin. J. Chem. Eng., 23, 559-571, 2015.
  • [148] M. Janardhanaiah, S. Gangadhar, V. Govinda, K. Sreenivasulu, P. Venkateswarlu, “Effect of alkanol chain length on excess thermodynamic properties of p-cresol with 1-alkanol (c3-c8) at 298.15, 303.15, 308.15 and 313.15 K ,“ J. Mol. Liq., 211, 169–177, 2015.
  • [149] A. Ali, A. K. Nain, D. Chand, B. Lal, “Volumetric and viscometric studies of molecular interactions in binary N, N-dimethylacetamide + phenylmethanol mixtures at different temperatures,” South African J. Chem. 58, 098–104, 2005a.
  • [150] A. Ali, J. D. Pandey, N. K. Soni, A. K. Nain, B. Lal, D. Chand, “Densities, ultrasonic speeds, viscosities and refractive indices of binary mixtures of benzene with phenylmethanol, benzonitrile, benzol chloride and chlorobenzene at 303.15 K,” Chinese J. Chem., 23(4), 377-385, 2005b.
  • [151] R. Francesconi, A. Bigi, K. Rubini, F. Comelli, “Excess enthalpies, heat capacities, densities, viscosities and refractive indices of dimethyl sulfoxide + three aryl alcohols at 308.15 K and atmospheric pressure,” J. Chem. Eng. Data 50, 1932-1937, 2005.
  • [152] A. Ali, M. Tariq, “Thermodynamic and transport behavior of binary liquid mixtures of phenylmethanol with monocyclic aromatics at 303.15 K,” J. Mol. Liq. 128, 050–055, 2006.
  • [153] C. Alonso-Tristan, J. A. Gonzalez, I. Garcia de la Fuente, J. C. Cobos, “Thermodynamics of mixtures containing aromatic alcohols. 1. Liquid-liquid equilibria for (phenylmethanol+alkane) systems,” J. Chem. Eng. Data, 57, 1186-1191, 2012.
  • [154] L. Venkatramana, R. L. Gardas, K. Sivakumar, R. K. Dayananda, “Thermodynamics of binary mixtures: The effect of substituents in aromatics on their excess properties with phenylmethanol,” Fluid Phase Equilib., 367, 007–021, 2014.
  • [155] H. R. Rafiee, “Volumetric properties for binary and ternary mixtures containing phenylmethanol, ethyl butyrate and diethyl malonate at T=(293.15–313.15) K and P=0.087 MPa,” J. Solution Chem., 46, 663–681, 2017.
  • [156] J. Karunakar, K. D. Reddy, M. V. P. Rao, “Isentropic compressibilities of mixtures of aliphatic alcohols with benzonitrile,” J. Chem. Eng. Data, 27(3), 348–350, 1982.
  • [157] E. Zorebski, M. Gepper-Rybczynska, “Thermodynamic and transport properties of (butan-1-ol + 1,4-butanediol) at temperatures from (298.15 to 318.15) K,” J. Chem. Thermodyn., 42(3), 409-418, 2010.
  • [158] R. Sadeghi, S. Azizpour, “Volumetric, compressibility and viscometric measurements of binary mixtures of poly(vinylpirrolidone) + water, + methanol, + ethanol, + acetonitrile, + propan-1-ol, + propan-2-ol, and + butan-1-ol,” J. Chem. Eng. Data, 56, 240-250, 2011.
  • [159] L. M. Casas, G. Marino, M. Iglesias, B. Orge, J. Tojo, L. Mosteiro, “Excess molar volumes, and changes of isentropic compressibilities of ternary (acetone+methanol+(2-methyl-propan-1-ol or 3-methyl-butan-1-ol)) at 298.15 K,” J. Chem. Thermodyn. 33, 1777-1789, 2001.
  • [160] A. S. Al-Jimaz, J. A. Al-Kandary, A. H. M. Abdul-Latif, “Densities and viscosities for binary mixtures of phenetole with pentan-1-ol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures,” Fluid Phase Equilib., 218, 247-260, 2004.
  • [161] M. S. Al-Tuwaim, K. H. A. E. Al-Khaldi, A. S. Al-Jimaz, A. A. Mohammad, “Comparative study of physico-chemical properties of binary mixtures of N, N-dimethylformamide with 1-alkanols at different temperatures,” J. Chem. Thermodyn. 48, 039-047, 2012.
  • [162] H. Kumar, S. Sharma, “Acoustical studies of binary liquid mixtures of cyclopentane with 1-alkanol at different temperatures and different approaches for ideal mixing laws,” J. Solut. Chem., 39, 967-986, 2010.
  • [163] M. S. Reddy, I. Khan, K. T. S. S. Raju, P. Sureshd, B. H. Babu, “The study of molecular interactions in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate + pentan-1-ol from density, speed of sound and refractive index measurements,” J. Chem. Thermodyn. 98, 298-308, 2016.
  • [164] A. Ali, A. K. Nain, D. Chand, R. Ahmad, “Volumetric, ultrasonic, and viscosimetric studies of molecular interactions in binary mixtures of aromatic + aliphatic alcohols at different temperatures,” Phys. Chem. Liq. 43, 205-224, 2005c.
Toplam 164 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Regular Original Research Article
Yazarlar

Rebecca S. Andrade 0000-0001-8915-7220

Cristina González Bu kişi benim

Ana Verena Xavier Bu kişi benim

Miguel Iglesias

Proje Numarası 438376/2018-8 and 313601/2019-4
Yayımlanma Tarihi 27 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 23 Sayı: 3

Kaynak Göster

APA S. Andrade, R., González, C., Xavier, A. V., Iglesias, M. (2020). Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature. International Journal of Thermodynamics, 23(3), 176-195. https://doi.org/10.5541/ijot.720015
AMA S. Andrade R, González C, Xavier AV, Iglesias M. Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature. International Journal of Thermodynamics. Ağustos 2020;23(3):176-195. doi:10.5541/ijot.720015
Chicago S. Andrade, Rebecca, Cristina González, Ana Verena Xavier, ve Miguel Iglesias. “Modelling and Experimental Thermodynamic Data of Hydroxylic Compounds (C1-C6) As a Function of Temperature”. International Journal of Thermodynamics 23, sy. 3 (Ağustos 2020): 176-95. https://doi.org/10.5541/ijot.720015.
EndNote S. Andrade R, González C, Xavier AV, Iglesias M (01 Ağustos 2020) Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature. International Journal of Thermodynamics 23 3 176–195.
IEEE R. S. Andrade, C. González, A. V. Xavier, ve M. Iglesias, “Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature”, International Journal of Thermodynamics, c. 23, sy. 3, ss. 176–195, 2020, doi: 10.5541/ijot.720015.
ISNAD S. Andrade, Rebecca vd. “Modelling and Experimental Thermodynamic Data of Hydroxylic Compounds (C1-C6) As a Function of Temperature”. International Journal of Thermodynamics 23/3 (Ağustos 2020), 176-195. https://doi.org/10.5541/ijot.720015.
JAMA S. Andrade R, González C, Xavier AV, Iglesias M. Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature. International Journal of Thermodynamics. 2020;23:176–195.
MLA S. Andrade, Rebecca vd. “Modelling and Experimental Thermodynamic Data of Hydroxylic Compounds (C1-C6) As a Function of Temperature”. International Journal of Thermodynamics, c. 23, sy. 3, 2020, ss. 176-95, doi:10.5541/ijot.720015.
Vancouver S. Andrade R, González C, Xavier AV, Iglesias M. Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature. International Journal of Thermodynamics. 2020;23(3):176-95.