Thermodynamic studies like density ( ), specific gravity, ultrasonic speed ( ) and excess molar volume ( ) and excess enthalpy of binary liquid mixtures of benzene + 1,2-dichloroethane have been carried out over the different range of composition at 303.15 K. Thermodynamic parameters like isentropic compressibility , intermolecular free length, Lf, Relative association, Ra, have been computed from experimental findings. The excess thermodynamic functions have been fitted to the Redlich-Kister polynomial equation. The experimental ultrasonic speeds have been analyzed in terms of Jacobson Free Length Theory (FLT), Schaaff’s Collision Factor Theory (CFT), Nomoto’s relation, and Van Dael’s ideal mixture relation. Intermolecular Free Length, , and available volume, , have been calculated from FLT, CFT and thermoacoustic approach. It is observed that density and specific gravity increases and ultrasonic speed, isentropic compressibility and intermolecular free length decreases with the mole fraction of 1,2-dichloroethane. It is found that intermolecular interactions present between binary liquid mixtures are stronger than pure solvent-solvent interactions. Observed negative values of excess molar volume and positive value of molar excess enthalpy confirm the presence of specific chemical attractive force of interactions between the two binary liquid mixtures.
Ultrasonic speed Excess Molar Volume excess molar enthalpy Benzene and 1 2-dichlororethane.
Primary Language | English |
---|---|
Journal Section | Regular Original Research Article |
Authors | |
Publication Date | September 5, 2013 |
Published in Issue | Year 2013 Volume: 16 Issue: 3 |