BibTex RIS Cite

Thermodynamic study of binary liquid mixtures of Benzene and 1,2-dichloroethane at T = 303.15 K

Year 2013, Volume: 16 Issue: 3, 123 - 131, 05.09.2013

Abstract

Thermodynamic studies like density ( ), specific gravity, ultrasonic speed ( ) and excess molar volume ( ) and excess enthalpy of binary liquid mixtures of benzene + 1,2-dichloroethane have been carried out over the different range of composition at 303.15 K. Thermodynamic parameters like isentropic compressibility , intermolecular free length, Lf, Relative association, Ra, have been computed from experimental findings. The excess thermodynamic functions have been fitted to the Redlich-Kister polynomial equation. The experimental ultrasonic speeds have been analyzed in terms of Jacobson Free Length Theory (FLT), Schaaff’s Collision Factor Theory (CFT), Nomoto’s relation, and Van Dael’s ideal mixture relation. Intermolecular Free Length, , and available volume, , have been calculated from FLT, CFT and thermoacoustic approach. It is observed that density and specific gravity increases and ultrasonic speed, isentropic compressibility and intermolecular free length decreases with the mole fraction of 1,2-dichloroethane. It is found that intermolecular interactions present between binary liquid mixtures are stronger than pure solvent-solvent interactions. Observed negative values of excess molar volume and positive value of molar excess enthalpy confirm the presence of specific chemical attractive force of interactions between the two binary liquid mixtures.

References

  • Acree, W. E. (1983). Density, speed of sound, and isentropic compressibility of triethanol amine (or Nmethyldiethanolamine) + water + ethanol solutions from t = (15 to 50)°C. J. Chem. Eng. Data, 28, 215-216.
  • Alessandra, D., Aprano Camillo La Mesa, & Persit, L. (1997). Ultrasonic nebulization for efficient delivery of surfactant in a model of acute lung injury. Impact on gas exchange. Amm. J. Respir. Crit. Care Med., 156, 4454
  • Aminabhavi, T. M., & Banerjee, K. (1998). Density, viscosity, refractive index, and speed of sound in binary mixtures of 1,2- dichlorobenzene with methyl acetate, ethyl acetate, N-propyl acetate, N-butyl acetate, and 3methylbutyl-2-acetate in the temperature interval (215-308.15) K. J. Chem. Eng. Data., 43, 514-518.
  • Abe, A., & Flory, P. J. (1965). The thermodynamic properties of mixtures of small, nonpolar molecules. J. Am. Chem. Soc., 87, 1838-1846.
  • Aminabhavi, T. M., & Gopalakrishna, B. J. (1995). Density, viscosity of binary mixtures of N,Ndimethylformamide, dimethylsulfoxide, N,N-dimethyl acetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. Chem. Eng. Data, 40, 856-8
  • Aminabhavi, T. M., & Banerjee, K. (1998). Density, viscosity, refractive index, and speed of sound in binary mixtures of dimethyl carbonate with methanol, chloroform, carbon tetrachloride, cyclohexane, and dichloromethane in the temperature interval (298.15− 3015) K. J. Chem. Eng. Data, 43, 1096-1101.
  • Bhatia, S. C., Bhatia, R., & Dubey, G. P. (2009). Studies on transport and thermodynamic properties of binary mixtures of octan-1-ol with chloroform, 1,2dichloroethane and 1,1,2,2-tetrachloroethane at 298.15 and 3015 K. J. Mol. Liquid, 144, 163-171.
  • Becu, L., Manneville, S., & Colin, A. (2006). Study of triglyceride- protein interaction using a microemulsionfiltration method. Phys. Rev. Lett., 76, 138-145. Brasllev, M., & Grfesex, F. (2002). Emulsion Polymerization Synthesis of Cationic Polymer Latex in an Ultrasonic Field. J. Colloid Interface Sci., 251, 78
  • Benson, G. C., & Kiyohara, O. K. (1979). Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn., 11, 1061-1064.
  • Bondi, A. (1968). Physical Properties of Molecules, Liquids and Gases, Wiley: New York.
  • Coggeshall, N. D., & Saier, E. L. (1951). Study of molecular interaction in ternary mixtures through ultrasonic speed measurements. J. Am. Chem. Soc., 73, 5414-5418.
  • Davanbakht, A., Long, J., & Zana, R. (1977). Intermolecular interaction studies of binary mixtures of inorganic and organometallic complexes. J. Phys. Chem., 81, 2620-2629.
  • Franks, F., Quickenden, M. A. J., Reid, D. S., & Watson, B. (1970). A differential calorimeter for the measurement of heats of solution at high dilution. Trans Faraday Soc., 66, 583-592.
  • Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (2004). Textbook of Practical Organic Chemistry. Longman. p. 398.
  • Flory, P. J., Orwoll, R. A., & Vrij, A., J. (1964). Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons. Am. Chem. Soc., 86, 3507-3515.
  • Grunwald, E., & Coburn, W. C. (1958). Group contributions to the thermodynamic properties of nonionic organic solutes in dilute aqueous solution. J. Am. Chem. Soc., 80, 1322-1325.
  • Gopal, K., & Rao, N. P. (1981). Thermodynamic properties of aqueous organic solutes in relation to their structure. Acoustics Letters, 4, 164-169.
  • Haijun, W., Goukong, Z., & Mingzhi, C. (1994). VaporLiquid Equilibria of 1-Propanol or 2-Propanol with 2,2,4-Trimethylpentane at 101.3 kPa. J. Chem.Eng. Data., 26, 457-465.
  • Hickey, S., Lawrence, M. J., Hagan, S. A., & Buckin, V. (2006). Analysis of the phase diagram and microstructural transitions in phospholipid microemulsion systems using high-resolution ultrasonic spectroscopy. Langmuir, 22, 5575-5582.
  • Inglese, A., & Kehiaian, H. V. (1982). Molar excess volumes and excess heat capacities of (1,2,4trichlorobenzene + an alkane). Int. Data Ser. Sec. A 1.
  • Internet (2012). as per data provided in advanced chemistry development Inc, Adelaide Street, West TorontoOntario, Canada.
  • Jacobson, B. (1952). Intermolecular free lengths in the liquid state; Adiabatic and isothermal compressibilities. Acta Chim Scand, 6, 1485-1497.
  • Jacobson, B. (1952). Theoretical study of ultrasonic velocity in binary liquid mixtures at 30 o C. Acta Chem. Scand., A6 1485-1498.
  • J. S. Rowlinson, (1969) Liquids and Liquid Mixtures, Butterworth: London.
  • Kaulgud, M. V., & Roa, K. S. M. (1979). Ultrasonic velocity and viscosity of binary liquid mixtures. J. Chem. Soc. Faraday Trans I, 75, 2237-2251.
  • Kumar, A. (1989). Acoustic studies of binary mixtures of aromatic ketones in benzene. Colloids and Surfaces, 34, 313-3
  • Lin, W., & Tsay, S. J. (1970). Nuclear magnetic resonance studies on the intermolecular association in some binary mixtures. J. Phys. Chem., 74, 1037-1041.
  • Mehrotra, K. N., & Upadhaya, S. K. (1987). Acoustical studies of calcium soaps. Acoustics Letters, 11, 66-75.
  • Mehrotra, K. N., Gahlaut, A. S., & Sharma, M. J. (1987). Ultrasonic studies of molecular interactions in the solutions of lanthanum soaps. Colloid Interface Sci., 120, 1-297.
  • Mehrotra, K. N., & Gahlaut, A. S. (1989). Studies on the micellar behaviour of praseodymium soaps. Colloid and Surfaces, 25, 163-180.
  • Mehta, & Kawaljet, S. K. (2002). Intermolecular interaction study of microemulsions and emulsions in DDAB/W/oil systems. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 65, 5-11.
  • Morcom, K. W. (1973). Excess enthalpy; 1,3-Dioxane + cyclohexane and 1,4-dioxane + cyclohexane. Int. Data Ser., Sec. A, 1, 56-63.
  • Nomoto, O. (1958). Empirical formula for sound velocity in liquid mixtures. J. Phys.Soc. Jpn., 13, 1528-1532. interacting organic solvents. Acoustics Letters, 11, 66
  • Srivastava, T. N., Singh, R. P., & Swaroop, B. (1983). Theoretical evaluation of ultrasonic velocity in binary liquid mixtures. Ind. J. Pure Appl. Phys., 21, 67-73.
  • Srivastava, V. N. P. (1988). Thermodynamic properties of Ne+n-H 2 mixtures deduced from ultrasonic velocity data. Acoustics Letters, 12, 72-76.
  • Staveley L. A. K., Tupman W. I. & Hart K. R. (1955). Some Thermodyanmic properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + cheloroform and acetone + carbon disulphide. Trans. Faraday Soc., 51, 323-343.
  • Van Dael, W. (1975). Thermodynamic Properties and Velocity of Sound, Butterworth: London, Chap. 5.
  • Venkatesu, P., & Rao, M. V. P. (1994). Excess volumes of ternary mixtures of N,N-dimethyl formamide + methyl isobutyl ketone + 1-alkanols at 303.15 K. Fluid Phase Equilibria, 98, 173-178.
  • Wanger, M. H., Weithoff, Freidrich, S. W., Mollenhauer, I., Obiaden, M., & Boenick, U. (2000). Ultrasonic surfactant nebulization with different exciting frequencies. Bio. Phys. Chem., 84, 35-43.
  • Weavers, L. K., Gimyang, F. P. J., Limei, A. Y., Rathman, & James, F. (2005). Ultrasonic destruction of surfactants: application to industrial waste waters. Benzene Environ. Research, 77, 259-267.
Year 2013, Volume: 16 Issue: 3, 123 - 131, 05.09.2013

Abstract

References

  • Acree, W. E. (1983). Density, speed of sound, and isentropic compressibility of triethanol amine (or Nmethyldiethanolamine) + water + ethanol solutions from t = (15 to 50)°C. J. Chem. Eng. Data, 28, 215-216.
  • Alessandra, D., Aprano Camillo La Mesa, & Persit, L. (1997). Ultrasonic nebulization for efficient delivery of surfactant in a model of acute lung injury. Impact on gas exchange. Amm. J. Respir. Crit. Care Med., 156, 4454
  • Aminabhavi, T. M., & Banerjee, K. (1998). Density, viscosity, refractive index, and speed of sound in binary mixtures of 1,2- dichlorobenzene with methyl acetate, ethyl acetate, N-propyl acetate, N-butyl acetate, and 3methylbutyl-2-acetate in the temperature interval (215-308.15) K. J. Chem. Eng. Data., 43, 514-518.
  • Abe, A., & Flory, P. J. (1965). The thermodynamic properties of mixtures of small, nonpolar molecules. J. Am. Chem. Soc., 87, 1838-1846.
  • Aminabhavi, T. M., & Gopalakrishna, B. J. (1995). Density, viscosity of binary mixtures of N,Ndimethylformamide, dimethylsulfoxide, N,N-dimethyl acetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. Chem. Eng. Data, 40, 856-8
  • Aminabhavi, T. M., & Banerjee, K. (1998). Density, viscosity, refractive index, and speed of sound in binary mixtures of dimethyl carbonate with methanol, chloroform, carbon tetrachloride, cyclohexane, and dichloromethane in the temperature interval (298.15− 3015) K. J. Chem. Eng. Data, 43, 1096-1101.
  • Bhatia, S. C., Bhatia, R., & Dubey, G. P. (2009). Studies on transport and thermodynamic properties of binary mixtures of octan-1-ol with chloroform, 1,2dichloroethane and 1,1,2,2-tetrachloroethane at 298.15 and 3015 K. J. Mol. Liquid, 144, 163-171.
  • Becu, L., Manneville, S., & Colin, A. (2006). Study of triglyceride- protein interaction using a microemulsionfiltration method. Phys. Rev. Lett., 76, 138-145. Brasllev, M., & Grfesex, F. (2002). Emulsion Polymerization Synthesis of Cationic Polymer Latex in an Ultrasonic Field. J. Colloid Interface Sci., 251, 78
  • Benson, G. C., & Kiyohara, O. K. (1979). Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn., 11, 1061-1064.
  • Bondi, A. (1968). Physical Properties of Molecules, Liquids and Gases, Wiley: New York.
  • Coggeshall, N. D., & Saier, E. L. (1951). Study of molecular interaction in ternary mixtures through ultrasonic speed measurements. J. Am. Chem. Soc., 73, 5414-5418.
  • Davanbakht, A., Long, J., & Zana, R. (1977). Intermolecular interaction studies of binary mixtures of inorganic and organometallic complexes. J. Phys. Chem., 81, 2620-2629.
  • Franks, F., Quickenden, M. A. J., Reid, D. S., & Watson, B. (1970). A differential calorimeter for the measurement of heats of solution at high dilution. Trans Faraday Soc., 66, 583-592.
  • Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (2004). Textbook of Practical Organic Chemistry. Longman. p. 398.
  • Flory, P. J., Orwoll, R. A., & Vrij, A., J. (1964). Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons. Am. Chem. Soc., 86, 3507-3515.
  • Grunwald, E., & Coburn, W. C. (1958). Group contributions to the thermodynamic properties of nonionic organic solutes in dilute aqueous solution. J. Am. Chem. Soc., 80, 1322-1325.
  • Gopal, K., & Rao, N. P. (1981). Thermodynamic properties of aqueous organic solutes in relation to their structure. Acoustics Letters, 4, 164-169.
  • Haijun, W., Goukong, Z., & Mingzhi, C. (1994). VaporLiquid Equilibria of 1-Propanol or 2-Propanol with 2,2,4-Trimethylpentane at 101.3 kPa. J. Chem.Eng. Data., 26, 457-465.
  • Hickey, S., Lawrence, M. J., Hagan, S. A., & Buckin, V. (2006). Analysis of the phase diagram and microstructural transitions in phospholipid microemulsion systems using high-resolution ultrasonic spectroscopy. Langmuir, 22, 5575-5582.
  • Inglese, A., & Kehiaian, H. V. (1982). Molar excess volumes and excess heat capacities of (1,2,4trichlorobenzene + an alkane). Int. Data Ser. Sec. A 1.
  • Internet (2012). as per data provided in advanced chemistry development Inc, Adelaide Street, West TorontoOntario, Canada.
  • Jacobson, B. (1952). Intermolecular free lengths in the liquid state; Adiabatic and isothermal compressibilities. Acta Chim Scand, 6, 1485-1497.
  • Jacobson, B. (1952). Theoretical study of ultrasonic velocity in binary liquid mixtures at 30 o C. Acta Chem. Scand., A6 1485-1498.
  • J. S. Rowlinson, (1969) Liquids and Liquid Mixtures, Butterworth: London.
  • Kaulgud, M. V., & Roa, K. S. M. (1979). Ultrasonic velocity and viscosity of binary liquid mixtures. J. Chem. Soc. Faraday Trans I, 75, 2237-2251.
  • Kumar, A. (1989). Acoustic studies of binary mixtures of aromatic ketones in benzene. Colloids and Surfaces, 34, 313-3
  • Lin, W., & Tsay, S. J. (1970). Nuclear magnetic resonance studies on the intermolecular association in some binary mixtures. J. Phys. Chem., 74, 1037-1041.
  • Mehrotra, K. N., & Upadhaya, S. K. (1987). Acoustical studies of calcium soaps. Acoustics Letters, 11, 66-75.
  • Mehrotra, K. N., Gahlaut, A. S., & Sharma, M. J. (1987). Ultrasonic studies of molecular interactions in the solutions of lanthanum soaps. Colloid Interface Sci., 120, 1-297.
  • Mehrotra, K. N., & Gahlaut, A. S. (1989). Studies on the micellar behaviour of praseodymium soaps. Colloid and Surfaces, 25, 163-180.
  • Mehta, & Kawaljet, S. K. (2002). Intermolecular interaction study of microemulsions and emulsions in DDAB/W/oil systems. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 65, 5-11.
  • Morcom, K. W. (1973). Excess enthalpy; 1,3-Dioxane + cyclohexane and 1,4-dioxane + cyclohexane. Int. Data Ser., Sec. A, 1, 56-63.
  • Nomoto, O. (1958). Empirical formula for sound velocity in liquid mixtures. J. Phys.Soc. Jpn., 13, 1528-1532. interacting organic solvents. Acoustics Letters, 11, 66
  • Srivastava, T. N., Singh, R. P., & Swaroop, B. (1983). Theoretical evaluation of ultrasonic velocity in binary liquid mixtures. Ind. J. Pure Appl. Phys., 21, 67-73.
  • Srivastava, V. N. P. (1988). Thermodynamic properties of Ne+n-H 2 mixtures deduced from ultrasonic velocity data. Acoustics Letters, 12, 72-76.
  • Staveley L. A. K., Tupman W. I. & Hart K. R. (1955). Some Thermodyanmic properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + cheloroform and acetone + carbon disulphide. Trans. Faraday Soc., 51, 323-343.
  • Van Dael, W. (1975). Thermodynamic Properties and Velocity of Sound, Butterworth: London, Chap. 5.
  • Venkatesu, P., & Rao, M. V. P. (1994). Excess volumes of ternary mixtures of N,N-dimethyl formamide + methyl isobutyl ketone + 1-alkanols at 303.15 K. Fluid Phase Equilibria, 98, 173-178.
  • Wanger, M. H., Weithoff, Freidrich, S. W., Mollenhauer, I., Obiaden, M., & Boenick, U. (2000). Ultrasonic surfactant nebulization with different exciting frequencies. Bio. Phys. Chem., 84, 35-43.
  • Weavers, L. K., Gimyang, F. P. J., Limei, A. Y., Rathman, & James, F. (2005). Ultrasonic destruction of surfactants: application to industrial waste waters. Benzene Environ. Research, 77, 259-267.
There are 40 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Harish Moudgil

Publication Date September 5, 2013
Published in Issue Year 2013 Volume: 16 Issue: 3

Cite

APA Moudgil, H. (2013). Thermodynamic study of binary liquid mixtures of Benzene and 1,2-dichloroethane at T = 303.15 K. International Journal of Thermodynamics, 16(3), 123-131.
AMA Moudgil H. Thermodynamic study of binary liquid mixtures of Benzene and 1,2-dichloroethane at T = 303.15 K. International Journal of Thermodynamics. September 2013;16(3):123-131.
Chicago Moudgil, Harish. “Thermodynamic Study of Binary Liquid Mixtures of Benzene and 1,2-Dichloroethane at T = 303.15 K”. International Journal of Thermodynamics 16, no. 3 (September 2013): 123-31.
EndNote Moudgil H (September 1, 2013) Thermodynamic study of binary liquid mixtures of Benzene and 1,2-dichloroethane at T = 303.15 K. International Journal of Thermodynamics 16 3 123–131.
IEEE H. Moudgil, “Thermodynamic study of binary liquid mixtures of Benzene and 1,2-dichloroethane at T = 303.15 K”, International Journal of Thermodynamics, vol. 16, no. 3, pp. 123–131, 2013.
ISNAD Moudgil, Harish. “Thermodynamic Study of Binary Liquid Mixtures of Benzene and 1,2-Dichloroethane at T = 303.15 K”. International Journal of Thermodynamics 16/3 (September 2013), 123-131.
JAMA Moudgil H. Thermodynamic study of binary liquid mixtures of Benzene and 1,2-dichloroethane at T = 303.15 K. International Journal of Thermodynamics. 2013;16:123–131.
MLA Moudgil, Harish. “Thermodynamic Study of Binary Liquid Mixtures of Benzene and 1,2-Dichloroethane at T = 303.15 K”. International Journal of Thermodynamics, vol. 16, no. 3, 2013, pp. 123-31.
Vancouver Moudgil H. Thermodynamic study of binary liquid mixtures of Benzene and 1,2-dichloroethane at T = 303.15 K. International Journal of Thermodynamics. 2013;16(3):123-31.