Research Article
BibTex RIS Cite

Year 2025, Issue: Erken Görünüm - Early Pub Issues, 1 - 8

Abstract

References

  • J. Tobin, To Conquer the Air: The Wright Brothers and the Great Race for Flight, New York, NY, USA: Simon & Schuster, 2003.
  • R. Decher, Powering the World's Airliners: Engine Developments from the Propeller to the Jet Age, Barnsley: Air World, 2020.
  • J. D. Anderson, Introduction to flight, 5th ed. New York, NY, USA: McGraw-Hill, 2005.
  • M. R. Anvekar, Aircraft Propulsion, New Delhi, India: PHI Learning Private Limited, 2016.
  • S. M. Pavelec, The Jet Race and the Second World War, New York, NY, USA: Bloomsbury Publishing USA, 2007.
  • O. E. Lancaster, Jet Propulsion Engines, vol. 3931, Princeton, NJ, USA: Princeton University Press, 2015.
  • S. Sarkar, Jet Engines: A Comprehensive Analysis of History, Design Principles, and Future Trends, Dhaka: CATECH Publications, 2011.
  • S. Luo, Y. Feng, J. Song, D. Xu, and K. Xia, “Progress and challenges in exploration of powder fueled ramjets,” Applied Thermal Engineering, vol. 213, Aug. 2022, Art. no. 118776, doi: 10.1016/j.applthermaleng.2022.118776.
  • G. Choubey and M. Tiwari, Scramjet Combustion: Fundamentals and Advances, Oxford, UK: Butterworth-Heinemann, 2022.
  • C. Segal, The Scramjet Engine: Processes and Characteristics, vol. 25, 1st ed. Cambridge, UK: Cambridge University Press, 2009.
  • E. Prisell, “The scramjet: A solution for hypersonic aerodynamic propulsion,” in Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, Tucson, AZ, USA, Jul. 2005, p. 3550. doi: 10.2514/6.2005-3550.
  • Z. Ren, B. Wang, G. Xiang, D. Zhao, and L. Zheng, “Supersonic spray combustion subject to scramjets: Progress and challenges,” Progress in Aerospace Sciences, vol. 105, pp. 40–59, Feb. 2019, doi: 10.1016/j.paerosci.2018.12.002.
  • J. J. Chang, J. Zhang, W. Bao, and D. Yu, “Research progress on strut-equipped supersonic combustors for scramjet application,” Progress in Aerospace Sciences, vol. 103, pp. 1-30, Nov. 2018, doi: 10.1016/j.paerosci.2018.10.002.
  • Z. Lv, J. Xu, G. Song, R. Li, and J. Ge, “Review on the aerodynamic issues of the exhaust system for scramjet and turbine based combined cycle engine,” Progress in Aerospace Sciences, vol. 143, Nov. 2023, Art. no. 100956, doi: 10.1016/j.paerosci.2023.100956.
  • A. F. El-Sayed, Fundamentals of Aircraft and Rocket Propulsion. Cham, Switzerland: Springer, 2016.
  • C. Fan, R. Jiang, and S. Zhang, “Current Status and Future Prospects of Jet Engines,” Highlights in Science, Engineering and Technology, vol. 29, pp. 240–246, Jan. 2023, doi: 10.54097/hset.v29i.4836.
  • E. Benini and S. Giacometti, “Design, manufacturing and operation of a small turbojet-engine for research purposes,” Applied Energy, vol. 84, no. 11, pp. 1102–1116, Nov. 2007, doi: 10.1016/j.apenergy.2007.05.006.
  • M. Siyahi, H. Siyahi, M. Fallah, and Z. Mohammadi, “Thermodynamic Optimization and Energy-Exergy Analyses of the Turboshaft Helicopter Engine,” International Journal of Thermodynamics, vol. 27, no. 3, pp. 15–25, Sep. 2024, doi: 10.5541/ijot.1458027.
  • M. Elwardany, A. E. M. Nassi̇B, and H. A. Mohamed, “Comparative Evaluation for Selected Gas Turbine Cycles,” International Journal of Thermodynamics, vol. 26, no. 4, pp. 57–67, Dec. 2023, doi: 10.5541/ijot.1268823.
  • M. Karabacak, M. Kirmizi, H. Aygun, and O. Turan, “Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions,” Energy, vol. 283, Nov. 2023, Art. no. 129054, doi: 10.1016/j.energy.2023.129054.
  • M. Karabacak and O. Turan, “Off-design analysis of the inverted Brayton cycle engine,” Aircraft Engineering and Aerospace Technology, vol. 96, no. 7, pp. 954–963, Aug. 2024, doi: 10.1108/AEAT-02-2024-0032.
  • M. Karabacak and O. Turan, “Inverted Brayton Cycle Engine Optimization for Hypersonic Flight,” Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 24, no. 4, pp. 257–274, Dec. 2023, doi: 10.18038/estubtda.1270986.
  • J. J. Murray, A. Guha, and A. Bond, “Overview of the development of heat exchangers for use in air breathing propulsion pre coolers,” Acta Astronautica, vol. 41, no. 11, pp. 723–729, Dec. 1997, doi: 10.1016/S0094 5765(97)00199 9.
  • D. Di Battista, F. Fatigati, R. Carapellucci ve R. Cipollone, “Inverted Brayton Cycle for waste heat recovery in reciprocating internal combustion engines,” Applied Energy, vol. 253, Nov. 2019, Art. no. 113565, doi: 10.1016/j.apenergy.2019.113565.
  • I. Kennedy, Z. Chen, B. Ceen, S. Jones ve C. D. Copeland,”Experimental investigation of an inverted Brayton cycle for exhaust gas energy recovery, ” Journal of Engineering for Gas Turbines and Power, vol. 141, no. 3, p. 032301, Oct. 2019, doi: 10.1115/1.4041109.
  • P. C. Dong, H. L. Tang, and M. Chen, “Study on multi-cycle coupling mechanism of hypersonic precooled combined cycle engine,” Applied Thermal Engineering, vol. 131, pp. 497–506, Feb. 2018, doi: 10.1016/j.applthermaleng.2017.12.002.
  • T. Sato, N. Tanatsugu, Y. Naruo, J. Omi, J. Tomike, and T. Nishino, “Development Study on Atrex Engine,” Acta Astronautica, vol. 47, no. 11, pp. 799–808, Dec. 2000, doi: 10.1016/S0094-5765(00)00129-6.
  • H. Webber, A. Bond, and M. Hempsell, “Sensitivity of pre-cooled air breathing engine performance to heat exchanger design parameters,” in Proc. 57th Int. Astronautical Congress, Valencia, Spain, Oct. 2006, pp. D2–P.
  • X. Yu, C. Wang, and D. Yu, “Thermodynamic design and optimization of the multi-branch closed Brayton cycle based precooling-compression system for a novel hypersonic aeroengine,” Energy Conversion and Management, vol. 205, Feb. 2020, Art. no. 112412, doi: 10.1016/j.enconman.2019.112412.
  • M. Karabacak, Design and Performance Optimization of Engines for Low-Observable Aircraft with Supercruise Capability, Ph.D. dissertation, Dept. of Aircraft and Powerplant Maintenance, Eskisehir Technical Univ., Eskisehir, Turkey, (in Turkish), 2024.
  • M. Karabacak, Propulsion Systems Design Projects, Ankara, Turkey, Akademisyen Kitabevi, (in Turkish), 2024.

Investigations on Ideal Inverted Brayton Cycle Engines

Year 2025, Issue: Erken Görünüm - Early Pub Issues, 1 - 8

Abstract

In this study, T-S and P-V diagrams of the ideal inverted Brayton cycle engine are obtained by using numerical methods in Matlab® environment. The thermodynamic analysis of the inverted Brayton cycle engine is carried out to determine the limitations and development possibilities of this engine type and thus to guide the designer in this field. In the T-S and P-V diagram analysis, many findings about the limits and potential of the engine are obtained. It is observed that in the inverted Brayton cycle engine, unlike the Brayton cycle engine, there is no optimum compressor pressure ratio and the specific work increases as the compressor pressure ratio increases. Regardless of the flight Mach number, entropy generation in the afterburner is approximately 800 J/(kg·K), and entropy destruction in the cooling section is approximately 1000 J/(kg·K). Entropy generation in the preburner decreases from around 1800 J/(kg·K) under takeoff conditions to nearly zero during hypersonic flight, in parallel with the ram compression taking over the function of the preburner.

References

  • J. Tobin, To Conquer the Air: The Wright Brothers and the Great Race for Flight, New York, NY, USA: Simon & Schuster, 2003.
  • R. Decher, Powering the World's Airliners: Engine Developments from the Propeller to the Jet Age, Barnsley: Air World, 2020.
  • J. D. Anderson, Introduction to flight, 5th ed. New York, NY, USA: McGraw-Hill, 2005.
  • M. R. Anvekar, Aircraft Propulsion, New Delhi, India: PHI Learning Private Limited, 2016.
  • S. M. Pavelec, The Jet Race and the Second World War, New York, NY, USA: Bloomsbury Publishing USA, 2007.
  • O. E. Lancaster, Jet Propulsion Engines, vol. 3931, Princeton, NJ, USA: Princeton University Press, 2015.
  • S. Sarkar, Jet Engines: A Comprehensive Analysis of History, Design Principles, and Future Trends, Dhaka: CATECH Publications, 2011.
  • S. Luo, Y. Feng, J. Song, D. Xu, and K. Xia, “Progress and challenges in exploration of powder fueled ramjets,” Applied Thermal Engineering, vol. 213, Aug. 2022, Art. no. 118776, doi: 10.1016/j.applthermaleng.2022.118776.
  • G. Choubey and M. Tiwari, Scramjet Combustion: Fundamentals and Advances, Oxford, UK: Butterworth-Heinemann, 2022.
  • C. Segal, The Scramjet Engine: Processes and Characteristics, vol. 25, 1st ed. Cambridge, UK: Cambridge University Press, 2009.
  • E. Prisell, “The scramjet: A solution for hypersonic aerodynamic propulsion,” in Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, Tucson, AZ, USA, Jul. 2005, p. 3550. doi: 10.2514/6.2005-3550.
  • Z. Ren, B. Wang, G. Xiang, D. Zhao, and L. Zheng, “Supersonic spray combustion subject to scramjets: Progress and challenges,” Progress in Aerospace Sciences, vol. 105, pp. 40–59, Feb. 2019, doi: 10.1016/j.paerosci.2018.12.002.
  • J. J. Chang, J. Zhang, W. Bao, and D. Yu, “Research progress on strut-equipped supersonic combustors for scramjet application,” Progress in Aerospace Sciences, vol. 103, pp. 1-30, Nov. 2018, doi: 10.1016/j.paerosci.2018.10.002.
  • Z. Lv, J. Xu, G. Song, R. Li, and J. Ge, “Review on the aerodynamic issues of the exhaust system for scramjet and turbine based combined cycle engine,” Progress in Aerospace Sciences, vol. 143, Nov. 2023, Art. no. 100956, doi: 10.1016/j.paerosci.2023.100956.
  • A. F. El-Sayed, Fundamentals of Aircraft and Rocket Propulsion. Cham, Switzerland: Springer, 2016.
  • C. Fan, R. Jiang, and S. Zhang, “Current Status and Future Prospects of Jet Engines,” Highlights in Science, Engineering and Technology, vol. 29, pp. 240–246, Jan. 2023, doi: 10.54097/hset.v29i.4836.
  • E. Benini and S. Giacometti, “Design, manufacturing and operation of a small turbojet-engine for research purposes,” Applied Energy, vol. 84, no. 11, pp. 1102–1116, Nov. 2007, doi: 10.1016/j.apenergy.2007.05.006.
  • M. Siyahi, H. Siyahi, M. Fallah, and Z. Mohammadi, “Thermodynamic Optimization and Energy-Exergy Analyses of the Turboshaft Helicopter Engine,” International Journal of Thermodynamics, vol. 27, no. 3, pp. 15–25, Sep. 2024, doi: 10.5541/ijot.1458027.
  • M. Elwardany, A. E. M. Nassi̇B, and H. A. Mohamed, “Comparative Evaluation for Selected Gas Turbine Cycles,” International Journal of Thermodynamics, vol. 26, no. 4, pp. 57–67, Dec. 2023, doi: 10.5541/ijot.1268823.
  • M. Karabacak, M. Kirmizi, H. Aygun, and O. Turan, “Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions,” Energy, vol. 283, Nov. 2023, Art. no. 129054, doi: 10.1016/j.energy.2023.129054.
  • M. Karabacak and O. Turan, “Off-design analysis of the inverted Brayton cycle engine,” Aircraft Engineering and Aerospace Technology, vol. 96, no. 7, pp. 954–963, Aug. 2024, doi: 10.1108/AEAT-02-2024-0032.
  • M. Karabacak and O. Turan, “Inverted Brayton Cycle Engine Optimization for Hypersonic Flight,” Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 24, no. 4, pp. 257–274, Dec. 2023, doi: 10.18038/estubtda.1270986.
  • J. J. Murray, A. Guha, and A. Bond, “Overview of the development of heat exchangers for use in air breathing propulsion pre coolers,” Acta Astronautica, vol. 41, no. 11, pp. 723–729, Dec. 1997, doi: 10.1016/S0094 5765(97)00199 9.
  • D. Di Battista, F. Fatigati, R. Carapellucci ve R. Cipollone, “Inverted Brayton Cycle for waste heat recovery in reciprocating internal combustion engines,” Applied Energy, vol. 253, Nov. 2019, Art. no. 113565, doi: 10.1016/j.apenergy.2019.113565.
  • I. Kennedy, Z. Chen, B. Ceen, S. Jones ve C. D. Copeland,”Experimental investigation of an inverted Brayton cycle for exhaust gas energy recovery, ” Journal of Engineering for Gas Turbines and Power, vol. 141, no. 3, p. 032301, Oct. 2019, doi: 10.1115/1.4041109.
  • P. C. Dong, H. L. Tang, and M. Chen, “Study on multi-cycle coupling mechanism of hypersonic precooled combined cycle engine,” Applied Thermal Engineering, vol. 131, pp. 497–506, Feb. 2018, doi: 10.1016/j.applthermaleng.2017.12.002.
  • T. Sato, N. Tanatsugu, Y. Naruo, J. Omi, J. Tomike, and T. Nishino, “Development Study on Atrex Engine,” Acta Astronautica, vol. 47, no. 11, pp. 799–808, Dec. 2000, doi: 10.1016/S0094-5765(00)00129-6.
  • H. Webber, A. Bond, and M. Hempsell, “Sensitivity of pre-cooled air breathing engine performance to heat exchanger design parameters,” in Proc. 57th Int. Astronautical Congress, Valencia, Spain, Oct. 2006, pp. D2–P.
  • X. Yu, C. Wang, and D. Yu, “Thermodynamic design and optimization of the multi-branch closed Brayton cycle based precooling-compression system for a novel hypersonic aeroengine,” Energy Conversion and Management, vol. 205, Feb. 2020, Art. no. 112412, doi: 10.1016/j.enconman.2019.112412.
  • M. Karabacak, Design and Performance Optimization of Engines for Low-Observable Aircraft with Supercruise Capability, Ph.D. dissertation, Dept. of Aircraft and Powerplant Maintenance, Eskisehir Technical Univ., Eskisehir, Turkey, (in Turkish), 2024.
  • M. Karabacak, Propulsion Systems Design Projects, Ankara, Turkey, Akademisyen Kitabevi, (in Turkish), 2024.
There are 31 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Online First
Authors

Mustafa Karabacak 0000-0002-3301-9862

Onder Turan 0000-0003-0303-4313

Early Pub Date September 15, 2025
Publication Date October 5, 2025
Submission Date March 1, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Issue: Erken Görünüm - Early Pub Issues

Cite

APA Karabacak, M., & Turan, O. (2025). Investigations on Ideal Inverted Brayton Cycle Engines. International Journal of Thermodynamics(Erken Görünüm - Early Pub Issues), 1-8.
AMA Karabacak M, Turan O. Investigations on Ideal Inverted Brayton Cycle Engines. International Journal of Thermodynamics. September 2025;(Erken Görünüm - Early Pub Issues):1-8.
Chicago Karabacak, Mustafa, and Onder Turan. “Investigations on Ideal Inverted Brayton Cycle Engines”. International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues (September 2025): 1-8.
EndNote Karabacak M, Turan O (September 1, 2025) Investigations on Ideal Inverted Brayton Cycle Engines. International Journal of Thermodynamics Erken Görünüm - Early Pub Issues 1–8.
IEEE M. Karabacak and O. Turan, “Investigations on Ideal Inverted Brayton Cycle Engines”, International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues, pp. 1–8, September2025.
ISNAD Karabacak, Mustafa - Turan, Onder. “Investigations on Ideal Inverted Brayton Cycle Engines”. International Journal of Thermodynamics Erken Görünüm - Early Pub Issues (September2025), 1-8.
JAMA Karabacak M, Turan O. Investigations on Ideal Inverted Brayton Cycle Engines. International Journal of Thermodynamics. 2025;:1–8.
MLA Karabacak, Mustafa and Onder Turan. “Investigations on Ideal Inverted Brayton Cycle Engines”. International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues, 2025, pp. 1-8.
Vancouver Karabacak M, Turan O. Investigations on Ideal Inverted Brayton Cycle Engines. International Journal of Thermodynamics. 2025(Erken Görünüm - Early Pub Issues):1-8.