Research Article
BibTex RIS Cite

Year 2025, Issue: Erken Görünüm - Early Pub Issues, 1 - 6

Abstract

References

  • S. Perlmutter et al., “Discovery of a supernova explosion at half the age of the Universe,” Nature, vol. 391, no. 6662, pp. 51–54, Jan. 1998, doi: 10.1038/34124.
  • B. P. Schmidt et al., “The High‐Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae,” The Astrophysical Journal, vol. 507, no. 1, pp. 46–63, Nov. 1998, doi: 10.1086/306308.
  • D. N. Spergel et al., “First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, pp. 175–194, Sep. 2003, doi: 10.1086/377226.
  • C. B. Netterfield et al., “A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background,” The Astrophysical Journal, vol. 571, no. 2, pp. 604–614, Jun. 2002, doi: 10.1086/340118.
  • J. D. Bekenstein, “Black Holes and Entropy,” Physical Review D, vol. 7, no. 8, pp. 2333–2346, Apr. 1973, doi:10.1103/physrevd.7.2333.
  • T. Jacobson, “Thermodynamics of Spacetime: The Einstein Equation of State,” Physical Review Letters, vol. 75, no. 7, pp. 1260–1263, Aug. 1995, doi: 10.1103/physrevlett.75.1260.
  • Τ. Padmanabhan, “Gravity and the thermodynamics of horizons,” Physics Reports, vol. 406, no. 2, pp. 49–125, Jan. 2005, doi: 10.1016/j.physrep.2004.10.003.
  • M. Akbar and R.-G. Cai, “Friedmann equations of FRW universe in scalar–tensor gravity, f(R) gravity and first law of thermodynamics,” Physics Letters B, vol. 635, no. 1, pp. 7–10, Mar. 2006, doi: 10.1016/j.physletb.2006.02.035.
  • C. Eling, Raf Guedens, and T. Jacobson, “Non-equilibrium Thermodynamics of Spacetime,” Physical Review Letters, vol. 96, no. 12, Mar. 2006, doi: 10.1103/physrevlett.96.121301.
  • M. L. Lyra and C. Tsallis, “Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems,” Physical Review Letters, vol. 80, no. 1, pp. 53–56, Jan. 1998, doi: 10.1103/physrevlett.80.53.
  • C. Tsallis, “Dynamical scenario for nonextensive statistical mechanics,” Physica A: Statistical Mechanics and its Applications, vol. 340, no. 1–3, pp. 1–10, Sep. 2004, doi: https://doi.org/10.1016/j.physa.2004.03.072.
  • G. Kaniadakis, “Statistical mechanics in the context of special relativity,” Physical Review E, vol. 66, no. 5, Nov. 2002, doi: 10.1103/physreve.66.056125.
  • J. D. Barrow, “The area of a rough black hole,” Physics Letters B, vol. 808, Sep. 2020, Art. no. 135643, doi: 10.1016/j.physletb.2020.135643.
  • E. N. Saridakis, “Modified cosmology through spacetime thermodynamics and Barrow horizon entropy,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 07, pp. 031–031, Jul. 2020, doi: 10.1088/1475-7516/2020/07/031.
  • E. N. Saridakis and S. Basilakos, “The generalized second law of thermodynamics with Barrow entropy,” The European Physical Journal C, vol. 81, no. 7, Jul. 2021, doi: 10.1140/epjc/s10052-021-09431-y.
  • E. N. Saridakis, “Barrow holographic dark energy,” Physical Review D, vol. 102, no. 12, Dec. 2020, doi: 10.1103/physrevd.102.123525.
  • A. Pradhan, A. Dixit, and Vinod Kumar Bhardwaj, “Barrow HDE model for statefinder diagnostic in FLRW universe,” International Journal of Modern Physics, vol. 36, no. 04, pp. 2150030–2150030, Feb. 2021, doi: 10.1142/s0217751x21500305.
  • V. K. Bhardwaj, A. Dixit, and A. Pradhan, “Statefinder hierarchy model for the Barrow holographic dark energy,” New Astronomy, vol. 88, p. 101623, Oct. 2021, doi: 10.1016/j.newast.2021.101623.
  • S. Srivastava and U. K. Sharma, “Barrow holographic dark energy with hubble horizon as IR cutoff,” International Journal of Geometric Methods in Modern Physics, vol. 18, no. 01, p. 2150014, Nov. 2020, doi: 10.1142/s0219887821500146.
  • D. A. Easson, P. H. Frampton, and G. F. Smoot, “Entropic accelerating universe,” Physics Letters B, vol. 696, no. 3, pp. 273–277, Jan. 2011, doi: 10.1016/j.physletb.2010.12.025.
  • S. Weinberg, Cosmology. New York: Oxford university press, 2008.
  • M. Naeem and A. Bibi, “Accelerating universe via entropic models,” The European Physical Journal Plus, vol. 138, no. 5, May 2023, doi: 10.1140/epjp/s13360-023-04073-3.
  • A. V. Kolesnichenko and M. Y. Marov, “Scenario of accelerated universe expansion under exposure to entropic forces related to with the entropies of Barrow and Tsallis−Cirto,” Mathematica Montisnigri, vol. 50, pp. 80–103, Jan. 2021, doi: 10.20948/mathmontis-2021-50-8.
  • A. G. Riess et al., “Type Ia Supernova Discoveries atz> 1 from theHubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” The Astrophysical Journal, vol. 607, no. 2, pp. 665–687, Jun. 2004, doi: 10.1086/383612.
  • S. Perlmutter et al., “Measurements of Ω and Λ from 42 High‐Redshift Supernovae,” The Astrophysical Journal, vol. 517, no. 2, pp. 565–586, Jun. 1999, doi: 10.1086/307221.

Cosmic Expansion Driven by Barrow Entropy

Year 2025, Issue: Erken Görünüm - Early Pub Issues, 1 - 6

Abstract

The concept of cosmic acceleration has become one of the fundamental concerns of modern cosmology. While the standard ΛCDM model incorporates dark energy to explain the accelerated expansion of the universe, alternative approaches are explored to understand cosmic dynamics. One such approach is Barrow entropic cosmology, which provides a generalized framework for cosmological thermodynamics by considering fractal deviations in the entropy-area relationship. In this sense, this study investigates the effects of Barrow's entropy on cosmological dynamics for the accelerating universe, focusing on modifications to the Friedmann equations. The results are compared with supernovae and CMB data based on the standard ΛCDM model, and provide insights into the applicability of Barrow cosmology as an alternative to dark energy. It is shown that the introduced Barrow correction term can explain the expanding universe. For Barrow parameter, which values are limited to the range 0≤∆ ≤1, as Δ increases, H(z) values approach the standard at low redshifts (z<0.5) but show significant deviations at high redshifts (z>1).

References

  • S. Perlmutter et al., “Discovery of a supernova explosion at half the age of the Universe,” Nature, vol. 391, no. 6662, pp. 51–54, Jan. 1998, doi: 10.1038/34124.
  • B. P. Schmidt et al., “The High‐Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae,” The Astrophysical Journal, vol. 507, no. 1, pp. 46–63, Nov. 1998, doi: 10.1086/306308.
  • D. N. Spergel et al., “First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, pp. 175–194, Sep. 2003, doi: 10.1086/377226.
  • C. B. Netterfield et al., “A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background,” The Astrophysical Journal, vol. 571, no. 2, pp. 604–614, Jun. 2002, doi: 10.1086/340118.
  • J. D. Bekenstein, “Black Holes and Entropy,” Physical Review D, vol. 7, no. 8, pp. 2333–2346, Apr. 1973, doi:10.1103/physrevd.7.2333.
  • T. Jacobson, “Thermodynamics of Spacetime: The Einstein Equation of State,” Physical Review Letters, vol. 75, no. 7, pp. 1260–1263, Aug. 1995, doi: 10.1103/physrevlett.75.1260.
  • Τ. Padmanabhan, “Gravity and the thermodynamics of horizons,” Physics Reports, vol. 406, no. 2, pp. 49–125, Jan. 2005, doi: 10.1016/j.physrep.2004.10.003.
  • M. Akbar and R.-G. Cai, “Friedmann equations of FRW universe in scalar–tensor gravity, f(R) gravity and first law of thermodynamics,” Physics Letters B, vol. 635, no. 1, pp. 7–10, Mar. 2006, doi: 10.1016/j.physletb.2006.02.035.
  • C. Eling, Raf Guedens, and T. Jacobson, “Non-equilibrium Thermodynamics of Spacetime,” Physical Review Letters, vol. 96, no. 12, Mar. 2006, doi: 10.1103/physrevlett.96.121301.
  • M. L. Lyra and C. Tsallis, “Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems,” Physical Review Letters, vol. 80, no. 1, pp. 53–56, Jan. 1998, doi: 10.1103/physrevlett.80.53.
  • C. Tsallis, “Dynamical scenario for nonextensive statistical mechanics,” Physica A: Statistical Mechanics and its Applications, vol. 340, no. 1–3, pp. 1–10, Sep. 2004, doi: https://doi.org/10.1016/j.physa.2004.03.072.
  • G. Kaniadakis, “Statistical mechanics in the context of special relativity,” Physical Review E, vol. 66, no. 5, Nov. 2002, doi: 10.1103/physreve.66.056125.
  • J. D. Barrow, “The area of a rough black hole,” Physics Letters B, vol. 808, Sep. 2020, Art. no. 135643, doi: 10.1016/j.physletb.2020.135643.
  • E. N. Saridakis, “Modified cosmology through spacetime thermodynamics and Barrow horizon entropy,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 07, pp. 031–031, Jul. 2020, doi: 10.1088/1475-7516/2020/07/031.
  • E. N. Saridakis and S. Basilakos, “The generalized second law of thermodynamics with Barrow entropy,” The European Physical Journal C, vol. 81, no. 7, Jul. 2021, doi: 10.1140/epjc/s10052-021-09431-y.
  • E. N. Saridakis, “Barrow holographic dark energy,” Physical Review D, vol. 102, no. 12, Dec. 2020, doi: 10.1103/physrevd.102.123525.
  • A. Pradhan, A. Dixit, and Vinod Kumar Bhardwaj, “Barrow HDE model for statefinder diagnostic in FLRW universe,” International Journal of Modern Physics, vol. 36, no. 04, pp. 2150030–2150030, Feb. 2021, doi: 10.1142/s0217751x21500305.
  • V. K. Bhardwaj, A. Dixit, and A. Pradhan, “Statefinder hierarchy model for the Barrow holographic dark energy,” New Astronomy, vol. 88, p. 101623, Oct. 2021, doi: 10.1016/j.newast.2021.101623.
  • S. Srivastava and U. K. Sharma, “Barrow holographic dark energy with hubble horizon as IR cutoff,” International Journal of Geometric Methods in Modern Physics, vol. 18, no. 01, p. 2150014, Nov. 2020, doi: 10.1142/s0219887821500146.
  • D. A. Easson, P. H. Frampton, and G. F. Smoot, “Entropic accelerating universe,” Physics Letters B, vol. 696, no. 3, pp. 273–277, Jan. 2011, doi: 10.1016/j.physletb.2010.12.025.
  • S. Weinberg, Cosmology. New York: Oxford university press, 2008.
  • M. Naeem and A. Bibi, “Accelerating universe via entropic models,” The European Physical Journal Plus, vol. 138, no. 5, May 2023, doi: 10.1140/epjp/s13360-023-04073-3.
  • A. V. Kolesnichenko and M. Y. Marov, “Scenario of accelerated universe expansion under exposure to entropic forces related to with the entropies of Barrow and Tsallis−Cirto,” Mathematica Montisnigri, vol. 50, pp. 80–103, Jan. 2021, doi: 10.20948/mathmontis-2021-50-8.
  • A. G. Riess et al., “Type Ia Supernova Discoveries atz> 1 from theHubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” The Astrophysical Journal, vol. 607, no. 2, pp. 665–687, Jun. 2004, doi: 10.1086/383612.
  • S. Perlmutter et al., “Measurements of Ω and Λ from 42 High‐Redshift Supernovae,” The Astrophysical Journal, vol. 517, no. 2, pp. 565–586, Jun. 1999, doi: 10.1086/307221.
There are 25 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Online First
Authors

M. Faruk Karabat 0000-0001-9670-7163

Early Pub Date September 30, 2025
Publication Date November 26, 2025
Submission Date June 4, 2025
Acceptance Date September 18, 2025
Published in Issue Year 2025 Issue: Erken Görünüm - Early Pub Issues

Cite

APA Karabat, M. F. (2025). Cosmic Expansion Driven by Barrow Entropy. International Journal of Thermodynamics(Erken Görünüm - Early Pub Issues), 1-6.
AMA Karabat MF. Cosmic Expansion Driven by Barrow Entropy. International Journal of Thermodynamics. September 2025;(Erken Görünüm - Early Pub Issues):1-6.
Chicago Karabat, M. Faruk. “Cosmic Expansion Driven by Barrow Entropy”. International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues (September 2025): 1-6.
EndNote Karabat MF (September 1, 2025) Cosmic Expansion Driven by Barrow Entropy. International Journal of Thermodynamics Erken Görünüm - Early Pub Issues 1–6.
IEEE M. F. Karabat, “Cosmic Expansion Driven by Barrow Entropy”, International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues, pp. 1–6, September2025.
ISNAD Karabat, M. Faruk. “Cosmic Expansion Driven by Barrow Entropy”. International Journal of Thermodynamics Erken Görünüm - Early Pub Issues (September2025), 1-6.
JAMA Karabat MF. Cosmic Expansion Driven by Barrow Entropy. International Journal of Thermodynamics. 2025;:1–6.
MLA Karabat, M. Faruk. “Cosmic Expansion Driven by Barrow Entropy”. International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues, 2025, pp. 1-6.
Vancouver Karabat MF. Cosmic Expansion Driven by Barrow Entropy. International Journal of Thermodynamics. 2025(Erken Görünüm - Early Pub Issues):1-6.