Research Article
BibTex RIS Cite

Implementation of a Multi-cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor

Year 2021, Volume: 24 Issue: 4, 125 - 133, 01.12.2021
https://doi.org/10.5541/ijot.895287

Abstract

Nowadays, the Aqueous Homogeneous Reactor (AHR) technology is under study for its use in the production of medical isotopes. This technology has proven to be potentially advantageous for this purpose due to its low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. Among the studies being carried out is computational modeling and simulation, which represents a key technology in the pursuit for improvements in efficiency, safety, and reliability of these systems. This paper aims to expand upon a previous AHR computational model through the implementation of a multi-cell approach for the improvement of the calculations using a methodology for the multi-physics and multi-scale coupling of the neutronic and thermal-hydraulic codes. It was found that these additions to the original model cause a small change to the overall reactor behavior. Thermal-hydraulic parameters such as, average fuel solution temperature and velocity, gas volume fraction and average radiolytic gas bubbles velocity undergo a variation of 0.161 °C, 0.0009 m/s, 0.015% and 0.0003 m/s. In contrast, significant local differences were obtained mainly for the fuel solution temperature and radiolytic gas bubbles volume fraction. It was verified that a simplified AHR computational model consisting of a 20° section of the fuel solution is able to adequately reproduce the results of the full AHR computational model.

Supporting Institution

National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES)

Project Number

141270/2016-0 and 88887.518186/2020-00

References

  • NEA, “The Supply of Medical Radioisotopes 2015 Medical Isotope Supply Review: 99 Mo/99m Tc Market Demand and Production Capacity Projection 2015-2020,” Paris, 2015.
  • NEA, “The Supply of Medical Radioisotopes 2018 Medical Isotope Demand and Capacity Projection for the 2018-2023 Period,” Paris, 2018.
  • NEA, “The Supply of Medical Radioisotopes. 2019 Medical Isotope Demand and Capacity Projection for the 2019-2024 Period,” 2019.
  • NEA, “The Supply of Medical Radioisotopes: Review of Potential Molybdenum-99 / Technetium-99m Production Technologies,” Paris, 2010.
  • IAEA, “Homogeneous Aqueous Solution Nuclear Reactors for the Production of Mo-99 and other Short Lived Radioistotopes,” Vienna, 2008.
  • IAEA, “Research Reactor Database (RRDB),” 2021. [Online]. Available: https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?filter=0. [Accessed: 03-Mar-2021].
  • D. M. Pérez, “Projeto e análise neutrônico-termoidráulica de um reator homogêneo aquoso usando combustível de baixo enriquecimento para a produção de radioisótopos usados na medicina,” Doctoral Thesis, Universidad Federal de Pernambuco, Recife, Brasil, 2020.
  • D. M. Pérez, D. M. Pérez, L. H. Pardo, D. E. M. Lorenzo, and C. A. B. de Oliveira Lira, “Multi-physics evaluation of the steady-state operation of an Aqueous Homogeneous Reactor for producing Mo-99 for the Brazilian demand,” Int. J. Thermodyn., vol. 24, no. 1, pp. 9–22, Feb. 2021.
  • Los Alamos National Laboratory, “MCNP6.1/MCNP5/MCNPX User Manual,” Los Alamos National Laboratory, Los Alamos, 2013.
  • ANSYS Team, “ANSYS CFD 19.0 Documentation, User’s Guide manual,” 2019. [Online]. Available: http://www.ansys.com. [Accessed: 01-Jul-2019].
  • D. M. Pérez et al., “Thermal-Hydraulics Study of a 75 kWth Aqueous Homogeneous Reactor for 99 Mo Production,” J. Thermodyn., vol. 2015, pp. 1–11, 2015.
  • D. M. Pérez, D. E. M. Lorenzo, C. A. B. De Oliveira Lira, C. R. G. Hernández, M. C. Rodríguez, and L. P. R. Garcia, “Effects of some calculation parameters on the computational modelling of temperature, velocity and gas volume fraction during steady-state operation of an aqueous homogeneous reactor,” Int. J. Nucl. Energy Sci. Technol., vol. 11, no. 1, p. 1, 2017.
  • D. M. Pérez, D. E. M. Lorenzo, C. A. B. de Oliveira Lira, and L. P. R. Garcia, “Neutronic evaluation of the steady-state operation of a 20 kWth Aqueous Homogeneous Reactor for Mo-99 production,” Ann. Nucl. Energy, vol. 128, 2019.
  • L. H. Pardo, D. M. Pérez, D. M. Pérez, D. E. Milian Lorenzo, and C. A. Brayner de Oliveira Lira, “Coupled multi-physics simulation for the evaluation of an accelerator-driven Aqueous Homogeneous Subcritical System for medical isotope production,” Prog. Nucl. Energy, vol. 134, p. 103692, Apr. 2021.
  • D. M. Pérez et al., “Study of radiolytic gas bubbles formation and behaviour in an aqueous uranyl sulphate solution using ImageJ,” Int. J. Nucl. Energy Sci. Technol., vol. 14, no. 3, pp. 235–251, 2020.
Year 2021, Volume: 24 Issue: 4, 125 - 133, 01.12.2021
https://doi.org/10.5541/ijot.895287

Abstract

Project Number

141270/2016-0 and 88887.518186/2020-00

References

  • NEA, “The Supply of Medical Radioisotopes 2015 Medical Isotope Supply Review: 99 Mo/99m Tc Market Demand and Production Capacity Projection 2015-2020,” Paris, 2015.
  • NEA, “The Supply of Medical Radioisotopes 2018 Medical Isotope Demand and Capacity Projection for the 2018-2023 Period,” Paris, 2018.
  • NEA, “The Supply of Medical Radioisotopes. 2019 Medical Isotope Demand and Capacity Projection for the 2019-2024 Period,” 2019.
  • NEA, “The Supply of Medical Radioisotopes: Review of Potential Molybdenum-99 / Technetium-99m Production Technologies,” Paris, 2010.
  • IAEA, “Homogeneous Aqueous Solution Nuclear Reactors for the Production of Mo-99 and other Short Lived Radioistotopes,” Vienna, 2008.
  • IAEA, “Research Reactor Database (RRDB),” 2021. [Online]. Available: https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?filter=0. [Accessed: 03-Mar-2021].
  • D. M. Pérez, “Projeto e análise neutrônico-termoidráulica de um reator homogêneo aquoso usando combustível de baixo enriquecimento para a produção de radioisótopos usados na medicina,” Doctoral Thesis, Universidad Federal de Pernambuco, Recife, Brasil, 2020.
  • D. M. Pérez, D. M. Pérez, L. H. Pardo, D. E. M. Lorenzo, and C. A. B. de Oliveira Lira, “Multi-physics evaluation of the steady-state operation of an Aqueous Homogeneous Reactor for producing Mo-99 for the Brazilian demand,” Int. J. Thermodyn., vol. 24, no. 1, pp. 9–22, Feb. 2021.
  • Los Alamos National Laboratory, “MCNP6.1/MCNP5/MCNPX User Manual,” Los Alamos National Laboratory, Los Alamos, 2013.
  • ANSYS Team, “ANSYS CFD 19.0 Documentation, User’s Guide manual,” 2019. [Online]. Available: http://www.ansys.com. [Accessed: 01-Jul-2019].
  • D. M. Pérez et al., “Thermal-Hydraulics Study of a 75 kWth Aqueous Homogeneous Reactor for 99 Mo Production,” J. Thermodyn., vol. 2015, pp. 1–11, 2015.
  • D. M. Pérez, D. E. M. Lorenzo, C. A. B. De Oliveira Lira, C. R. G. Hernández, M. C. Rodríguez, and L. P. R. Garcia, “Effects of some calculation parameters on the computational modelling of temperature, velocity and gas volume fraction during steady-state operation of an aqueous homogeneous reactor,” Int. J. Nucl. Energy Sci. Technol., vol. 11, no. 1, p. 1, 2017.
  • D. M. Pérez, D. E. M. Lorenzo, C. A. B. de Oliveira Lira, and L. P. R. Garcia, “Neutronic evaluation of the steady-state operation of a 20 kWth Aqueous Homogeneous Reactor for Mo-99 production,” Ann. Nucl. Energy, vol. 128, 2019.
  • L. H. Pardo, D. M. Pérez, D. M. Pérez, D. E. Milian Lorenzo, and C. A. Brayner de Oliveira Lira, “Coupled multi-physics simulation for the evaluation of an accelerator-driven Aqueous Homogeneous Subcritical System for medical isotope production,” Prog. Nucl. Energy, vol. 134, p. 103692, Apr. 2021.
  • D. M. Pérez et al., “Study of radiolytic gas bubbles formation and behaviour in an aqueous uranyl sulphate solution using ImageJ,” Int. J. Nucl. Energy Sci. Technol., vol. 14, no. 3, pp. 235–251, 2020.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Regular Original Research Article
Authors

Daniel Milian Pérez

Abel Gámez Rodríguez

Liván Hernández Pardo

Daylen Milian Pérez This is me

Daniel Milian Lorenzo

Carlos Brayner De Oliveira Lira

Project Number 141270/2016-0 and 88887.518186/2020-00
Publication Date December 1, 2021
Published in Issue Year 2021 Volume: 24 Issue: 4

Cite

APA Milian Pérez, D., Gámez Rodríguez, A., Hernández Pardo, L., Milian Pérez, D., et al. (2021). Implementation of a Multi-cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor. International Journal of Thermodynamics, 24(4), 125-133. https://doi.org/10.5541/ijot.895287
AMA Milian Pérez D, Gámez Rodríguez A, Hernández Pardo L, Milian Pérez D, Milian Lorenzo D, Brayner De Oliveira Lira C. Implementation of a Multi-cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor. International Journal of Thermodynamics. December 2021;24(4):125-133. doi:10.5541/ijot.895287
Chicago Milian Pérez, Daniel, Abel Gámez Rodríguez, Liván Hernández Pardo, Daylen Milian Pérez, Daniel Milian Lorenzo, and Carlos Brayner De Oliveira Lira. “Implementation of a Multi-Cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor”. International Journal of Thermodynamics 24, no. 4 (December 2021): 125-33. https://doi.org/10.5541/ijot.895287.
EndNote Milian Pérez D, Gámez Rodríguez A, Hernández Pardo L, Milian Pérez D, Milian Lorenzo D, Brayner De Oliveira Lira C (December 1, 2021) Implementation of a Multi-cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor. International Journal of Thermodynamics 24 4 125–133.
IEEE D. Milian Pérez, A. Gámez Rodríguez, L. Hernández Pardo, D. Milian Pérez, D. Milian Lorenzo, and C. Brayner De Oliveira Lira, “Implementation of a Multi-cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor”, International Journal of Thermodynamics, vol. 24, no. 4, pp. 125–133, 2021, doi: 10.5541/ijot.895287.
ISNAD Milian Pérez, Daniel et al. “Implementation of a Multi-Cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor”. International Journal of Thermodynamics 24/4 (December 2021), 125-133. https://doi.org/10.5541/ijot.895287.
JAMA Milian Pérez D, Gámez Rodríguez A, Hernández Pardo L, Milian Pérez D, Milian Lorenzo D, Brayner De Oliveira Lira C. Implementation of a Multi-cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor. International Journal of Thermodynamics. 2021;24:125–133.
MLA Milian Pérez, Daniel et al. “Implementation of a Multi-Cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor”. International Journal of Thermodynamics, vol. 24, no. 4, 2021, pp. 125-33, doi:10.5541/ijot.895287.
Vancouver Milian Pérez D, Gámez Rodríguez A, Hernández Pardo L, Milian Pérez D, Milian Lorenzo D, Brayner De Oliveira Lira C. Implementation of a Multi-cell Approach in the Multi-Physics Calculations of an Aqueous Homogeneous Reactor. International Journal of Thermodynamics. 2021;24(4):125-33.