Research Article
BibTex RIS Cite

Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis

Year 2022, Volume: 25 Issue: 1, 39 - 52, 01.03.2022
https://doi.org/10.5541/ijot.930459

Abstract

In this study, three desalination exergy analysis models including the Cerci et al. model (Model A), Drioli et al. model (Model B) and electrolyte solution model (Model C), were developed on an existing reverse osmosis (RO) desalination plant in Oman (Plant ALG). A modified ultrapure water (UPW) unit fed by Plant ALG has also been proposed (Plant A) based on the technology used in a UPW unit operated under the climate of Europe and fed by European river water (Plant B). The most suitable exergy model for characterizing the proposed UPW production plant was used. Model C was found to be the most proper model among its counterparts. It reflected the electrolytic behavior of the relevant streams and considered as the appropriate model. The major exergy destruction sites were also identified, and the exergy efficiency was calculated. The electro-de-ionization (EDI) and the RO unit were the highest exergy destructive components in Plant A.

Supporting Institution

Sultan Qaboos University

Project Number

NA

References

  • P. Palenzuela, B. Ortega-delgado, D. Alarcón-padilla, “Comparative assessment of the annual electricity and water production by concentrating solar power and desalination plants: A case study,” Appl. Therm. Eng., 2020:177:15485. https://doi.org/10.1016/j.applthermaleng.2020.115485.
  • Z. Rahimi-Ahar, M. S. Hatamipour, “A perspective of thermal type desalination: Technology, current development and thermodynamics analysis,” Encyclopedia of Life Support Systems (EOLSS). http://www.eolss.net/Eolss-sampleAllChapter.aspx, 2020.
  • K. Yousuf, 2019. “Efforts on to meet future water demand,” Available:Https://www.omanobserver.om/efforts-on-to-meet-future-water-demand/.
  • T. M. A. Al Sajwani, “The desalination plants of Oman: past, present and future,” Desalination, 1998:120:8–13. https://doi.org/10.1016/S0011-9164(98)00201-X.
  • Z. Rahimi-Ahar, M. S. Hatamipour, L. Rahimi Ahar, “Air Humidification-Dehumidification Process for Desalination: A review,” Prog. Energy Combust. Sci., 2020:80:100850. https://doi.org/10.1016/j.pecs.2020.100850.
  • O. N. Igobo, P. A. Davies, “Isothermal Organic Rankine Cycle (ORC) driving Reverse Osmosis (RO) Desalination: experimental investigation and case study using R245fa working fluid,” Appl. Therm. Eng., 2018:136:740–746. https://doi.org/10.1016/j.applthermaleng.2018.02.056.
  • M. A. Darwish, N. M. Al-najem, “Energy consumption by multi-stage flash and reverse osmosis desalters,” Appl. Therm. Eng., 2000:20:399–416. https://doi.org/10.1016/S1359-4311(99)00032-0.
  • S. Ahmadvand, B. Abbasi, B. Azarfar, M. Elhashimi, “Looking beyond energy efficiency: an applied review of water desalination technologies and an introduction to capillary-driven desalination,” water, 2019:11:696–726. https://doi.org/10.3390/w11040696.
  • Z. Rahimi-Ahar, M. S. Hatamipour, Y. Ghalavand, A. Palizvan, “Comprehensive study on vacuum humidification-dehumidification (VHDH) desalination,” Appl. Therm. Eng., 2020:114944. https://doi.org/10.1016/j.applthermaleng.2020.114944.
  • F. Cziesla, G. Tsatsaronis, Exergy, energy system analysis and optimization. Strengths and limitations of exergy analysis, Inst. Energy Eng., Vol. I, Springer. 1999.
  • F. Fitzsimons, B. Corcoran, P. Young, G. Foley, “Exergy analysis of water purification and desalination: A study of exergy model approaches,” Desalination, 2015:359:212–224. https://doi.org/10.1016/j.desal.2014.12.033.
  • Y. Cerci, “Exergy analysis of a reverse osmosis desalination plant in California,” Desalination, 2002:142: 257–266. https://doi.org/10.1016/j.desal.2004.08.045.
  • N. Kahraman, Y.A. Cengel, B. Wood, Y. Cerci, “Exergy analysis of a combined RO, NF, and EDR desalination plant,” Desalination, 2004:171:217–232. https://doi.org/10.1016/j.desal.2004.05.006.
  • A. Shekari Namin, H. Rostamzadeh, P. Nourani, “Thermodynamic and thermoeconomic analysis of three cascade power plants coupled with RO desalination unit, driven by a salinity-gradient solar pond,” Therm. Sci. Eng. Prog, 18, 100562, 2020. https://doi.org/10.1016/j.tsep.2020.100562.
  • A. Mohammadi, M. Mehrpooya, “Energy and exergy analyses of a combined desalination and CCHP system driven by geothermal energy,” Appl. Therm. Eng., 116, 685–694, 2017. https://doi.org/10.1016/j.applthermaleng.2017.01.114.
  • S. Islam, I. Dincer, B.S. Yilbas, “Development of a novel solar-based integrated system for desalination with heat recovery,” Appl. Therm. Eng., 129, 1618–1633, 2018. https://doi.org/10.1016/j.applthermaleng.2017.09.028.
  • H. Ishaq, I. Dincer, G. F. Naterer, “New trigeneration system integrated with desalination and industrial waste heat recovery for hydrogen production,” Appl. Therm. Eng., 142, 767–778, 2018. https://doi.org/10.1016/j.applthermaleng.2018.07.019.
  • N. Bouzayani, N. Galanis, J. Orfi, “Thermodynamic analysis of combined electric power generation and water desalination plants,” Appl. Therm. Eng., 29, 624–633, 2009. https://doi.org/10.1016/j.applthermaleng.2008.03.031.
  • A. Naseri, M. Bidi, M. H. Ahmadi, “Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink,” Renew. Energy, 113, 1215–1228, 2017. https://doi.org/10.1016/j.renene.2017.06.082.
  • M. Ameri, M. Seyd Eshaghi, “A novel configuration of reverse osmosis , humidification – dehumidification and flat plate collector: Modeling and exergy analysis,” Appl. Therm. Eng, 103, 855–873, 2016. https://doi.org/10.1016/j.applthermaleng.2016.04.047.
  • A. Grabowski, G. Zhang, H. Strathmann, G. Eigneberger, “The production of high purity water by continuous electrodeionization with bipolar membranes: influluence of the anion-exchange membrane permselectivity,” J. Membr. Sci., 281, 297–306, 2006. https://doi.org/10.1016/j.memsci.2006.03.044.
  • H. Lee, Y. Jin, S. Hong, “Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis (RO),” Desalination, 399, 185–197, 2016. https://doi.org/10.1016/j.desal.2016.09.003.
  • M. Zhan, H. Lee, Y. Jin, S. Hong, “Application of MFI-UF on an ultrapure water production system to monitor the stable performance of RO process,” Desalination, 491, 114565, 2020. https://doi.org/10.1016/j.desal.2020.114565.
  • Y. Jin, H. Lee, M. Zhan, S. Hong, “UV radiation pretreatment for reverse osmosis (RO) process in ultrapure water (UPW) production,” Desalination, 439, 138–146, 2018. https://doi.org/10.1016/j.desal.2018.04.019.
  • J. Wood, J. Gifford, J. Arba, M. Show, “Production of ultrapure water by continuous electrodeionization,” Desalination, 250, 973–976, 2010. https://doi.org/10.1016/j.desal.2009.09.084.
  • K. G. Nayar, M. H. Sharqawy, L. D. Banchik, J. H. Leinhard, “Thermophysical properties of seawater: A review and new correlations that include pressure dependence,” Desalination, 390, 1–24, 2016. https://doi.org/10.1016/j.desal.2016.02.024.
  • K. S. Pitzer, “Thermodynamics of electrolytes. I. Theoretical basis and general equations,” J. Phys. Chem., 77, 268−277, 1973. https://doi.org/10.1021/j100621a026.
  • T. J. Kotas, The exergy method of thermal plant analysis, 1st Ed., Anchor Brendon Ltd. 1997. 29] H. Hassan, M. S. Yousef, “An assessment of energy, exergy and CO2 emissions of a solar desalination system under hot climate conditions,” Process Saf. Environ. Prot., 145, 157-171, 2021. https://doi.org/10.1016/j.psep.2020.
Year 2022, Volume: 25 Issue: 1, 39 - 52, 01.03.2022
https://doi.org/10.5541/ijot.930459

Abstract

Project Number

NA

References

  • P. Palenzuela, B. Ortega-delgado, D. Alarcón-padilla, “Comparative assessment of the annual electricity and water production by concentrating solar power and desalination plants: A case study,” Appl. Therm. Eng., 2020:177:15485. https://doi.org/10.1016/j.applthermaleng.2020.115485.
  • Z. Rahimi-Ahar, M. S. Hatamipour, “A perspective of thermal type desalination: Technology, current development and thermodynamics analysis,” Encyclopedia of Life Support Systems (EOLSS). http://www.eolss.net/Eolss-sampleAllChapter.aspx, 2020.
  • K. Yousuf, 2019. “Efforts on to meet future water demand,” Available:Https://www.omanobserver.om/efforts-on-to-meet-future-water-demand/.
  • T. M. A. Al Sajwani, “The desalination plants of Oman: past, present and future,” Desalination, 1998:120:8–13. https://doi.org/10.1016/S0011-9164(98)00201-X.
  • Z. Rahimi-Ahar, M. S. Hatamipour, L. Rahimi Ahar, “Air Humidification-Dehumidification Process for Desalination: A review,” Prog. Energy Combust. Sci., 2020:80:100850. https://doi.org/10.1016/j.pecs.2020.100850.
  • O. N. Igobo, P. A. Davies, “Isothermal Organic Rankine Cycle (ORC) driving Reverse Osmosis (RO) Desalination: experimental investigation and case study using R245fa working fluid,” Appl. Therm. Eng., 2018:136:740–746. https://doi.org/10.1016/j.applthermaleng.2018.02.056.
  • M. A. Darwish, N. M. Al-najem, “Energy consumption by multi-stage flash and reverse osmosis desalters,” Appl. Therm. Eng., 2000:20:399–416. https://doi.org/10.1016/S1359-4311(99)00032-0.
  • S. Ahmadvand, B. Abbasi, B. Azarfar, M. Elhashimi, “Looking beyond energy efficiency: an applied review of water desalination technologies and an introduction to capillary-driven desalination,” water, 2019:11:696–726. https://doi.org/10.3390/w11040696.
  • Z. Rahimi-Ahar, M. S. Hatamipour, Y. Ghalavand, A. Palizvan, “Comprehensive study on vacuum humidification-dehumidification (VHDH) desalination,” Appl. Therm. Eng., 2020:114944. https://doi.org/10.1016/j.applthermaleng.2020.114944.
  • F. Cziesla, G. Tsatsaronis, Exergy, energy system analysis and optimization. Strengths and limitations of exergy analysis, Inst. Energy Eng., Vol. I, Springer. 1999.
  • F. Fitzsimons, B. Corcoran, P. Young, G. Foley, “Exergy analysis of water purification and desalination: A study of exergy model approaches,” Desalination, 2015:359:212–224. https://doi.org/10.1016/j.desal.2014.12.033.
  • Y. Cerci, “Exergy analysis of a reverse osmosis desalination plant in California,” Desalination, 2002:142: 257–266. https://doi.org/10.1016/j.desal.2004.08.045.
  • N. Kahraman, Y.A. Cengel, B. Wood, Y. Cerci, “Exergy analysis of a combined RO, NF, and EDR desalination plant,” Desalination, 2004:171:217–232. https://doi.org/10.1016/j.desal.2004.05.006.
  • A. Shekari Namin, H. Rostamzadeh, P. Nourani, “Thermodynamic and thermoeconomic analysis of three cascade power plants coupled with RO desalination unit, driven by a salinity-gradient solar pond,” Therm. Sci. Eng. Prog, 18, 100562, 2020. https://doi.org/10.1016/j.tsep.2020.100562.
  • A. Mohammadi, M. Mehrpooya, “Energy and exergy analyses of a combined desalination and CCHP system driven by geothermal energy,” Appl. Therm. Eng., 116, 685–694, 2017. https://doi.org/10.1016/j.applthermaleng.2017.01.114.
  • S. Islam, I. Dincer, B.S. Yilbas, “Development of a novel solar-based integrated system for desalination with heat recovery,” Appl. Therm. Eng., 129, 1618–1633, 2018. https://doi.org/10.1016/j.applthermaleng.2017.09.028.
  • H. Ishaq, I. Dincer, G. F. Naterer, “New trigeneration system integrated with desalination and industrial waste heat recovery for hydrogen production,” Appl. Therm. Eng., 142, 767–778, 2018. https://doi.org/10.1016/j.applthermaleng.2018.07.019.
  • N. Bouzayani, N. Galanis, J. Orfi, “Thermodynamic analysis of combined electric power generation and water desalination plants,” Appl. Therm. Eng., 29, 624–633, 2009. https://doi.org/10.1016/j.applthermaleng.2008.03.031.
  • A. Naseri, M. Bidi, M. H. Ahmadi, “Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink,” Renew. Energy, 113, 1215–1228, 2017. https://doi.org/10.1016/j.renene.2017.06.082.
  • M. Ameri, M. Seyd Eshaghi, “A novel configuration of reverse osmosis , humidification – dehumidification and flat plate collector: Modeling and exergy analysis,” Appl. Therm. Eng, 103, 855–873, 2016. https://doi.org/10.1016/j.applthermaleng.2016.04.047.
  • A. Grabowski, G. Zhang, H. Strathmann, G. Eigneberger, “The production of high purity water by continuous electrodeionization with bipolar membranes: influluence of the anion-exchange membrane permselectivity,” J. Membr. Sci., 281, 297–306, 2006. https://doi.org/10.1016/j.memsci.2006.03.044.
  • H. Lee, Y. Jin, S. Hong, “Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis (RO),” Desalination, 399, 185–197, 2016. https://doi.org/10.1016/j.desal.2016.09.003.
  • M. Zhan, H. Lee, Y. Jin, S. Hong, “Application of MFI-UF on an ultrapure water production system to monitor the stable performance of RO process,” Desalination, 491, 114565, 2020. https://doi.org/10.1016/j.desal.2020.114565.
  • Y. Jin, H. Lee, M. Zhan, S. Hong, “UV radiation pretreatment for reverse osmosis (RO) process in ultrapure water (UPW) production,” Desalination, 439, 138–146, 2018. https://doi.org/10.1016/j.desal.2018.04.019.
  • J. Wood, J. Gifford, J. Arba, M. Show, “Production of ultrapure water by continuous electrodeionization,” Desalination, 250, 973–976, 2010. https://doi.org/10.1016/j.desal.2009.09.084.
  • K. G. Nayar, M. H. Sharqawy, L. D. Banchik, J. H. Leinhard, “Thermophysical properties of seawater: A review and new correlations that include pressure dependence,” Desalination, 390, 1–24, 2016. https://doi.org/10.1016/j.desal.2016.02.024.
  • K. S. Pitzer, “Thermodynamics of electrolytes. I. Theoretical basis and general equations,” J. Phys. Chem., 77, 268−277, 1973. https://doi.org/10.1021/j100621a026.
  • T. J. Kotas, The exergy method of thermal plant analysis, 1st Ed., Anchor Brendon Ltd. 1997. 29] H. Hassan, M. S. Yousef, “An assessment of energy, exergy and CO2 emissions of a solar desalination system under hot climate conditions,” Process Saf. Environ. Prot., 145, 157-171, 2021. https://doi.org/10.1016/j.psep.2020.
There are 28 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Research Articles
Authors

Bashayar Al Maqbali This is me

Zohreh Rahimi-ahar This is me

Hasan Mousa This is me

G. Reza Vakili-nezhaad

Project Number NA
Publication Date March 1, 2022
Published in Issue Year 2022 Volume: 25 Issue: 1

Cite

APA Al Maqbali, B., Rahimi-ahar, Z., Mousa, H., Vakili-nezhaad, G. R. (2022). Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis. International Journal of Thermodynamics, 25(1), 39-52. https://doi.org/10.5541/ijot.930459
AMA Al Maqbali B, Rahimi-ahar Z, Mousa H, Vakili-nezhaad GR. Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis. International Journal of Thermodynamics. March 2022;25(1):39-52. doi:10.5541/ijot.930459
Chicago Al Maqbali, Bashayar, Zohreh Rahimi-ahar, Hasan Mousa, and G. Reza Vakili-nezhaad. “Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and Its Exergy Analysis”. International Journal of Thermodynamics 25, no. 1 (March 2022): 39-52. https://doi.org/10.5541/ijot.930459.
EndNote Al Maqbali B, Rahimi-ahar Z, Mousa H, Vakili-nezhaad GR (March 1, 2022) Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis. International Journal of Thermodynamics 25 1 39–52.
IEEE B. Al Maqbali, Z. Rahimi-ahar, H. Mousa, and G. R. Vakili-nezhaad, “Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis”, International Journal of Thermodynamics, vol. 25, no. 1, pp. 39–52, 2022, doi: 10.5541/ijot.930459.
ISNAD Al Maqbali, Bashayar et al. “Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and Its Exergy Analysis”. International Journal of Thermodynamics 25/1 (March 2022), 39-52. https://doi.org/10.5541/ijot.930459.
JAMA Al Maqbali B, Rahimi-ahar Z, Mousa H, Vakili-nezhaad GR. Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis. International Journal of Thermodynamics. 2022;25:39–52.
MLA Al Maqbali, Bashayar et al. “Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and Its Exergy Analysis”. International Journal of Thermodynamics, vol. 25, no. 1, 2022, pp. 39-52, doi:10.5541/ijot.930459.
Vancouver Al Maqbali B, Rahimi-ahar Z, Mousa H, Vakili-nezhaad GR. Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis. International Journal of Thermodynamics. 2022;25(1):39-52.