Research Article
BibTex RIS Cite

A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy

Year 2022, Volume: 25 Issue: 1, 109 - 121, 01.03.2022
https://doi.org/10.5541/ijot.994813

Abstract

This paper presents the design, evaluation, and optimization of an electricity generation system based on the two-stage organic Rankine cycle (TS-ORC), which utilizes the waste heat of an existing fluidized bed sewage sludge incineration (FBSSI) facility. The facility incinerates an average of 300 tons per day of sewage sludge with a dry matter content of 22%. After the drying process, the sewage sludge is burned in a fluidized bed combustor, and exhaust gas at a temperature of about 850-900ºC is released due to the combustion. The system provides the energy required to dry the sludge from this exhaust gas. In this study, a TS-ORC is designed to be coupled to the exhaust gas flowlines discharged to the atmosphere at two different points in the FBSSI plant. The exergy efficiency of the FBSSI facility is found to be 70.5%. Three different working fluids are selected to examine the variations of thermodynamic and thermoeconomic performance parameters of the designed TS-ORC system. The highest power generation in the TS-ORC system (183.40 kW) is achieved using R1234yf as working fluid. R1234yf is also the most expensive fluid for electricity generation among the other working fluids (10.57 $/h). The least electricity generation in the TS-ORC (142.70 kW) occurs at the thermoeconomically most affordable cost with R245fa (9.35 $/h).

Supporting Institution

Danida Fellowship Centre and the Ministry of Foreign Affairs of Denmark

Project Number

18-M06-AAU

Thanks

The authors acknowledge the support of the “HeatReFlex-Green and Flexible District Heating/Cooling” project (www.heatreflex.et.aau.dk) funded by the Danida Fellowship Centre and the Ministry of Foreign Affairs of Denmark to research in growth and transition countries under the grant no. 18-M06-AAU.

References

  • W. J. Ludikhuize, Special report: Research on new thermal treatment processes for domestic refuse in the Netherlands, Resour Recov Conserv, 5 (1980) 267-274.
  • H. Wall, E. Waltz, A. Verdouw, Fuel savings in sewage sludge incineration, Waste Manage Res, 2 (1984) 205-225.
  • S. Sakai, M. Hiraoka, N. Takeda, I. Ohhama, System design and full-scale plant study on a drying-incineration system for sewage sludge, Water Sci Technol, 21 (1989) 1453-1466.
  • M. Hassebrauck, G. Ermel, Two examples of thermal drying of sewage sludge, Water Sci Technol, 33 (1996) 235-242.
  • P. Thipkhunthod, V. Meeyoo, P. Rangsunvigit, B. Kitiyanan, K. Siemanond, T. Rirksomboon, Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses, Fuel, 84 (2005) 849-857.
  • P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral, Thermal processing of sewage sludge, Appl Therm Eng, 26 (2006) 1420-1426.
  • T. Taruya, N. Okuno, K. Kanaya, Reuse of sewage sludge as raw material of Portland cement in Japan, Water Sci Technol, 46 (2002) 255-258.
  • T. Murakami, Y. Suzuki, H. Nagasawa, T. Yamamoto, T. Koseki, H. Hirose, S. Okamoto, Combustion characteristics of sewage sludge in an incineration plant for energy recovery, Fuel Process Technol, 90 (2009) 778-783.
  • B. Khiari, F. Marias, J. Vaxelaire, F. Zagrouba, Incineration of a small particle of wet sewage sludge: A numerical comparison between two states of the surrounding atmosphere, J Hazard Mater, 147 (2007) 871-882.
  • J. Werther, T. Ogada, Sewage sludge combustion, Prog Energy Combust Sci, 25 (1999) 55-116.
  • P. L. Chem, J. A. Hudson, Incineration – Is there a case? Water Environ J, 19 (2005) 286-295.
  • S. Werle, R. K. Wilk, A review of methods for the thermal utilization of sewage sludge: Polish perspective,
  • Y. Cao, A. Pawlowski, Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment, Renew Sust Energ Rev, 16 (2012) 1657-1665.
  • M. Horttanainen, J. Kaiko, R. Bergman, M. Pasila-Lehtinen, J. Nerg, Performance analysis of power generating sludge combustion plant and comparison against other sludge treatment technologies, Appl Therm Eng, 30 (2010) 110-118.
  • S. Li, Y. Li, Q. Lu, J. Zhu, Y. Yao, S. Bao, Integrated drying and incineration of wet sludge in combined bubbling and circulating fluidized bed units, Waste Manage, 34 (2014) 2561-2566.
  • J Zhou, Y. Yao, Q. Lu, M. Gao, Z. Ouyang, Experimental investigation of gasification and incineration characteristics of dried sewage sludge in a circulating fluidized bed, Fuel, 150 (2015) 441-447.
  • M. C. Samolada, A. A. Zabaniotou, Comparative assessment of municipal sewage sludge incineration, gasification, and pyrolysis for a sustainable sludge-to-energy management in Greece, Waste Manage, 34 (2014) 411-420.
  • H. Ahn, D. Kim, Y. Lee, Combustion characteristics of sewage sludge solid fuels produced by drying and hydrothermal carbonization in a fluidized bed, Renewable Energy, 147 (2020) 957-968.
  • M. Schnell, T. Horst, P. Quicker, Thermal treatment of sewage sludge in Germany: A review, J Environ Manage, 263 (2020) 110367.
  • A. Abusoglu, A. Anvari-Moghaddam, J. M. Guerrero, Producing bio-electricity and bio-heat from urban sewage sludge in Turkey using a two-stage process, 5th International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET 2019), August 26-27, 2019, Istanbul, Turkey. DOI:10.1109/PGSRET.2019.8882699
  • N. Gao, K. Kamran, C. Quan, P. T. Williams, Thermochemical conversion of sewage sludge: A critical review, Prog Energy Combust Sci, 79 (2020) 100843.
  • D.K. Sarkar, Thermal Power Plant: Design and Operation, ISBN: 978-0-12-801575-9, Elsevier Inc, 2015.
  • F. Scala, Fluidized bed technologies for near-zero emission combustion and gasification, ISBN: 978-0-85709-880-1, Woodhead Publishing Ltd, 2013.
  • M. R. Taib, J. Swithenbank, V. S. Nasserzadeh, M. Ward, D. Cottam, Investigation of sludge waste incineration in a novel rotating fluidized bed incinerator, Process Saf Environ Prot, 77 (1999) 298-304.
  • W. Y. Wong, Y. Lu, V. S. Nasserzadeh, J. Swithenbank, T. Shaw, M. Madden, Experimental investigation into the incineration of wool scouring sludges in a novel rotating fluidized bed, J Hazard Mater, 73 (1999) 143-160.
  • J. V. Caneghem, A. Brems, P. Lievens, C. Block, P. Billen, I. Vermeulen, R. Dewil, J. Baeyens, C. Vandecasteele, Fluidized bed waste incinerators: Design operational and environmental issues, Prog Energy Combust Sci, 38 (2012) 551-582.
  • A. Shukrie, S. Anuar, A. Alias, Heat transfer of alumina sands in a fluidized bed combustor with novel circular edge segments air distributor, Energy Procedia, 75 (2015) 1752-1757.
  • R. Yan, T. D. Liang, L. Tsen, Case studies – Problem solving in fluidized bed waste fuel incineration, Energ Convers Manage, 46 (2005) 1165-1178.
  • W. A. W. A. K. Ghani, A. B. Alias, R. M. Savory, K. R. Cliffe, Co-combustion of agricultural residues with coal in a fluidized bed combustor, Waste Manage, 29 (2009) 767-773.
  • F. Burgess, P. D. W. Lloyd, P. S. Fennell, A. N. Hayhrust, Combustion of polymer pellets in a bubbling fluidized bed, Combust Flame, 158 (2011) 1638-1645.
  • B. Liu, X. Yang, W. Song, W. G. Lin, Process simulation of formation and emission of NO and N2O during decoupling combustion in a circulating fluidized bed combustor using Aspen Plus, Chem Eng Sci, 71 (2012) 375-391.
  • Y. Koç, H. Yağlı, A. Koç, Exergy analysis and performance improvement of a subcritical/supercritical organic Rankine cycle (ORC) for exhaust gas waste heat recovery in a biogas fuelled combined heat and power (CHP) engine through the use of regeneration, Energies, 12 (2019) 1-22.
  • S. Safa, K. Mobini, M. H. Khoshgoftar Manesh, Thermal and Exergetic Study of the Integrated “Multi-Effect Desalination”- “Solar Rankine Cycle” System for the Iranian Southern Coastal Regions, Int J of Thermodynamics, 24 (1) (2021) 31-52.
  • G. Eksi, F. Karaosmanoglu, Combined bioheat and biopower: A technology review and an assessment for Turkey, Renew Sust Energ Rev, 73 (2017) 1313-1332.
  • R. Strzalka, D. Schneider, U. Eicker, Current status of bioenergy technologies in Germany, Renew Sust Energ Rev, 72 (2017) 801-820.
  • A. Abusoglu, A. Tozlu, A. Anvari-Moghaddam, District heating and electricity production based on biogas produced from municipal WWTPs in Turkey: A comprehensive case study, Energy, 223 (2021) 1-18. https://doi.org/10.1016/j.energy.2021.119904
  • E. Ozahi, A. Tozlu, A. Abusoglu, Thermoeconomic multi-objective optimization of an organic Rankine cycle (ORC) adapted to an existing solid waste power plant, Energy Convers Manage, 168 (2018) 308-319.
  • E. Ozahi, A. Abusoglu, A. Tozlu, A comparative thermoeconomic analysis and optimization of two different combined cycles by utilizing waste heat source of an MSWPP, Energy Convers Manage, 228 (2021) 113583.
  • Çengel, Y. A., & Boles, M. A. Thermodynamics: An engineering approach. Boston: McGraw-Hill (2001).
  • D. Mignard, Correlating the chemical engineering plant cost index with macro-economic indicators, Chem. Eng. Res. and Des., 92 (2014) 285-294.
  • M. Jradi, S. B. Rıffat, Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes, J of Clean. Prod., 321 (2021) 129023.
  • D. Baruah, D. C. Baruah, Decision support system based planning of biomass gasification system for decentralised energy generation, Renew. Energy Focus, 38 (2021) 22-35.
  • http://www. http://www.asimptote.nl/software/cycle-tempo/cycle-tempo-model-examples/
  • J. Szargut, D. R. Morris, F. R. Steward, Exergy analyses of thermal, chemical and metallurgical processes, California: Hemisphere Publishing Co., (1988).
  • E. Cartmell, P. Gostelow, D. Riddell-Black, N. Simms, J. Oakey, J. Morris, Biosolids – A fuel or a waste? An integrated appraisal of five co-combustion scenarios with policy analysis, Environ Sci Technol, 40 (2006) 649-658.
  • P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral, Thermal processing of sewage sludge. Appl Therm Eng 26 (2006) 1420-1426.
  • https://data.tuik.gov.tr/Bulten/Index?p=Belediye-Atiksu-Istatistikleri-2018-30667
Year 2022, Volume: 25 Issue: 1, 109 - 121, 01.03.2022
https://doi.org/10.5541/ijot.994813

Abstract

Project Number

18-M06-AAU

References

  • W. J. Ludikhuize, Special report: Research on new thermal treatment processes for domestic refuse in the Netherlands, Resour Recov Conserv, 5 (1980) 267-274.
  • H. Wall, E. Waltz, A. Verdouw, Fuel savings in sewage sludge incineration, Waste Manage Res, 2 (1984) 205-225.
  • S. Sakai, M. Hiraoka, N. Takeda, I. Ohhama, System design and full-scale plant study on a drying-incineration system for sewage sludge, Water Sci Technol, 21 (1989) 1453-1466.
  • M. Hassebrauck, G. Ermel, Two examples of thermal drying of sewage sludge, Water Sci Technol, 33 (1996) 235-242.
  • P. Thipkhunthod, V. Meeyoo, P. Rangsunvigit, B. Kitiyanan, K. Siemanond, T. Rirksomboon, Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses, Fuel, 84 (2005) 849-857.
  • P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral, Thermal processing of sewage sludge, Appl Therm Eng, 26 (2006) 1420-1426.
  • T. Taruya, N. Okuno, K. Kanaya, Reuse of sewage sludge as raw material of Portland cement in Japan, Water Sci Technol, 46 (2002) 255-258.
  • T. Murakami, Y. Suzuki, H. Nagasawa, T. Yamamoto, T. Koseki, H. Hirose, S. Okamoto, Combustion characteristics of sewage sludge in an incineration plant for energy recovery, Fuel Process Technol, 90 (2009) 778-783.
  • B. Khiari, F. Marias, J. Vaxelaire, F. Zagrouba, Incineration of a small particle of wet sewage sludge: A numerical comparison between two states of the surrounding atmosphere, J Hazard Mater, 147 (2007) 871-882.
  • J. Werther, T. Ogada, Sewage sludge combustion, Prog Energy Combust Sci, 25 (1999) 55-116.
  • P. L. Chem, J. A. Hudson, Incineration – Is there a case? Water Environ J, 19 (2005) 286-295.
  • S. Werle, R. K. Wilk, A review of methods for the thermal utilization of sewage sludge: Polish perspective,
  • Y. Cao, A. Pawlowski, Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment, Renew Sust Energ Rev, 16 (2012) 1657-1665.
  • M. Horttanainen, J. Kaiko, R. Bergman, M. Pasila-Lehtinen, J. Nerg, Performance analysis of power generating sludge combustion plant and comparison against other sludge treatment technologies, Appl Therm Eng, 30 (2010) 110-118.
  • S. Li, Y. Li, Q. Lu, J. Zhu, Y. Yao, S. Bao, Integrated drying and incineration of wet sludge in combined bubbling and circulating fluidized bed units, Waste Manage, 34 (2014) 2561-2566.
  • J Zhou, Y. Yao, Q. Lu, M. Gao, Z. Ouyang, Experimental investigation of gasification and incineration characteristics of dried sewage sludge in a circulating fluidized bed, Fuel, 150 (2015) 441-447.
  • M. C. Samolada, A. A. Zabaniotou, Comparative assessment of municipal sewage sludge incineration, gasification, and pyrolysis for a sustainable sludge-to-energy management in Greece, Waste Manage, 34 (2014) 411-420.
  • H. Ahn, D. Kim, Y. Lee, Combustion characteristics of sewage sludge solid fuels produced by drying and hydrothermal carbonization in a fluidized bed, Renewable Energy, 147 (2020) 957-968.
  • M. Schnell, T. Horst, P. Quicker, Thermal treatment of sewage sludge in Germany: A review, J Environ Manage, 263 (2020) 110367.
  • A. Abusoglu, A. Anvari-Moghaddam, J. M. Guerrero, Producing bio-electricity and bio-heat from urban sewage sludge in Turkey using a two-stage process, 5th International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET 2019), August 26-27, 2019, Istanbul, Turkey. DOI:10.1109/PGSRET.2019.8882699
  • N. Gao, K. Kamran, C. Quan, P. T. Williams, Thermochemical conversion of sewage sludge: A critical review, Prog Energy Combust Sci, 79 (2020) 100843.
  • D.K. Sarkar, Thermal Power Plant: Design and Operation, ISBN: 978-0-12-801575-9, Elsevier Inc, 2015.
  • F. Scala, Fluidized bed technologies for near-zero emission combustion and gasification, ISBN: 978-0-85709-880-1, Woodhead Publishing Ltd, 2013.
  • M. R. Taib, J. Swithenbank, V. S. Nasserzadeh, M. Ward, D. Cottam, Investigation of sludge waste incineration in a novel rotating fluidized bed incinerator, Process Saf Environ Prot, 77 (1999) 298-304.
  • W. Y. Wong, Y. Lu, V. S. Nasserzadeh, J. Swithenbank, T. Shaw, M. Madden, Experimental investigation into the incineration of wool scouring sludges in a novel rotating fluidized bed, J Hazard Mater, 73 (1999) 143-160.
  • J. V. Caneghem, A. Brems, P. Lievens, C. Block, P. Billen, I. Vermeulen, R. Dewil, J. Baeyens, C. Vandecasteele, Fluidized bed waste incinerators: Design operational and environmental issues, Prog Energy Combust Sci, 38 (2012) 551-582.
  • A. Shukrie, S. Anuar, A. Alias, Heat transfer of alumina sands in a fluidized bed combustor with novel circular edge segments air distributor, Energy Procedia, 75 (2015) 1752-1757.
  • R. Yan, T. D. Liang, L. Tsen, Case studies – Problem solving in fluidized bed waste fuel incineration, Energ Convers Manage, 46 (2005) 1165-1178.
  • W. A. W. A. K. Ghani, A. B. Alias, R. M. Savory, K. R. Cliffe, Co-combustion of agricultural residues with coal in a fluidized bed combustor, Waste Manage, 29 (2009) 767-773.
  • F. Burgess, P. D. W. Lloyd, P. S. Fennell, A. N. Hayhrust, Combustion of polymer pellets in a bubbling fluidized bed, Combust Flame, 158 (2011) 1638-1645.
  • B. Liu, X. Yang, W. Song, W. G. Lin, Process simulation of formation and emission of NO and N2O during decoupling combustion in a circulating fluidized bed combustor using Aspen Plus, Chem Eng Sci, 71 (2012) 375-391.
  • Y. Koç, H. Yağlı, A. Koç, Exergy analysis and performance improvement of a subcritical/supercritical organic Rankine cycle (ORC) for exhaust gas waste heat recovery in a biogas fuelled combined heat and power (CHP) engine through the use of regeneration, Energies, 12 (2019) 1-22.
  • S. Safa, K. Mobini, M. H. Khoshgoftar Manesh, Thermal and Exergetic Study of the Integrated “Multi-Effect Desalination”- “Solar Rankine Cycle” System for the Iranian Southern Coastal Regions, Int J of Thermodynamics, 24 (1) (2021) 31-52.
  • G. Eksi, F. Karaosmanoglu, Combined bioheat and biopower: A technology review and an assessment for Turkey, Renew Sust Energ Rev, 73 (2017) 1313-1332.
  • R. Strzalka, D. Schneider, U. Eicker, Current status of bioenergy technologies in Germany, Renew Sust Energ Rev, 72 (2017) 801-820.
  • A. Abusoglu, A. Tozlu, A. Anvari-Moghaddam, District heating and electricity production based on biogas produced from municipal WWTPs in Turkey: A comprehensive case study, Energy, 223 (2021) 1-18. https://doi.org/10.1016/j.energy.2021.119904
  • E. Ozahi, A. Tozlu, A. Abusoglu, Thermoeconomic multi-objective optimization of an organic Rankine cycle (ORC) adapted to an existing solid waste power plant, Energy Convers Manage, 168 (2018) 308-319.
  • E. Ozahi, A. Abusoglu, A. Tozlu, A comparative thermoeconomic analysis and optimization of two different combined cycles by utilizing waste heat source of an MSWPP, Energy Convers Manage, 228 (2021) 113583.
  • Çengel, Y. A., & Boles, M. A. Thermodynamics: An engineering approach. Boston: McGraw-Hill (2001).
  • D. Mignard, Correlating the chemical engineering plant cost index with macro-economic indicators, Chem. Eng. Res. and Des., 92 (2014) 285-294.
  • M. Jradi, S. B. Rıffat, Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes, J of Clean. Prod., 321 (2021) 129023.
  • D. Baruah, D. C. Baruah, Decision support system based planning of biomass gasification system for decentralised energy generation, Renew. Energy Focus, 38 (2021) 22-35.
  • http://www. http://www.asimptote.nl/software/cycle-tempo/cycle-tempo-model-examples/
  • J. Szargut, D. R. Morris, F. R. Steward, Exergy analyses of thermal, chemical and metallurgical processes, California: Hemisphere Publishing Co., (1988).
  • E. Cartmell, P. Gostelow, D. Riddell-Black, N. Simms, J. Oakey, J. Morris, Biosolids – A fuel or a waste? An integrated appraisal of five co-combustion scenarios with policy analysis, Environ Sci Technol, 40 (2006) 649-658.
  • P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral, Thermal processing of sewage sludge. Appl Therm Eng 26 (2006) 1420-1426.
  • https://data.tuik.gov.tr/Bulten/Index?p=Belediye-Atiksu-Istatistikleri-2018-30667
There are 47 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics, Mechanical Engineering
Journal Section Research Articles
Authors

Ayşegül Abuşoğlu

Alperen Tozlu 0000-0002-2610-5279

Amjad Anvari-moghaddam

Project Number 18-M06-AAU
Publication Date March 1, 2022
Published in Issue Year 2022 Volume: 25 Issue: 1

Cite

APA Abuşoğlu, A., Tozlu, A., & Anvari-moghaddam, A. (2022). A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy. International Journal of Thermodynamics, 25(1), 109-121. https://doi.org/10.5541/ijot.994813
AMA Abuşoğlu A, Tozlu A, Anvari-moghaddam A. A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy. International Journal of Thermodynamics. March 2022;25(1):109-121. doi:10.5541/ijot.994813
Chicago Abuşoğlu, Ayşegül, Alperen Tozlu, and Amjad Anvari-moghaddam. “A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy”. International Journal of Thermodynamics 25, no. 1 (March 2022): 109-21. https://doi.org/10.5541/ijot.994813.
EndNote Abuşoğlu A, Tozlu A, Anvari-moghaddam A (March 1, 2022) A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy. International Journal of Thermodynamics 25 1 109–121.
IEEE A. Abuşoğlu, A. Tozlu, and A. Anvari-moghaddam, “A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy”, International Journal of Thermodynamics, vol. 25, no. 1, pp. 109–121, 2022, doi: 10.5541/ijot.994813.
ISNAD Abuşoğlu, Ayşegül et al. “A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy”. International Journal of Thermodynamics 25/1 (March 2022), 109-121. https://doi.org/10.5541/ijot.994813.
JAMA Abuşoğlu A, Tozlu A, Anvari-moghaddam A. A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy. International Journal of Thermodynamics. 2022;25:109–121.
MLA Abuşoğlu, Ayşegül et al. “A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy”. International Journal of Thermodynamics, vol. 25, no. 1, 2022, pp. 109-21, doi:10.5541/ijot.994813.
Vancouver Abuşoğlu A, Tozlu A, Anvari-moghaddam A. A Two-Stage ORC Integration to an Existing Fluidized Bed Sewage Sludge Incineration Plant for Power Production in the Scope of Waste-to-Energy. International Journal of Thermodynamics. 2022;25(1):109-21.