Research Article
BibTex RIS Cite
Year 2022, Volume: 25 Issue: 2, 8 - 14, 01.06.2022
https://doi.org/10.5541/ijot.991575

Abstract

References

  • W. Foerg, “History of cryogenics: the epoch of the pioneers from the beginning to the year 1911”, Int. J. of Refrigeration 25: 283-292. https://doi.org/10.1016/S0140-7007(01)00020-2, 2002.
  • J. P. Mosquera 2018 “Applications of Cryogenics: Past, Present, Future – Physics World”, Available : https://physicsworld.com/a/applications-of-cryogenics-past-present-future/2018, 2018.
  • Joule–Thomson effect – Wikipedia. https://pt.wikipedia.org/w/index.php?title=Efeito_Joule-Thomson&oldid=56114263, last update 29 August 2019.
  • C. G. Haseldon, Cryogenics Fundamentals, Academic Press Inc. New York, 1971.
  • M. Mukhopadhyay, Fundamentals of Cryogenic Engineering, PHI Learning, Eastern Economy Edition, Delhi (India), January 2021.
  • T. M. Flynn, Cryogenic Engineering, Marcel Dekker, 2005.
  • R. Barron , Cryogenic Systems, 2nd ed. Oxford Science Publications, Oxord University Press, New York, 1985. Kanoglu, M., Dincer, I., Rosen, M.A., “Performance analysis of gas liquefaction cycles”, Int. J. of Energy Research 32(1): pp 35 – 43, January 2008. https//:doi.org:10.1002/er.1333
  • B.-Z. Maytal, “Maximizing production rates of the Linde–Hampson machine”, Cryogenics 46 : 49–54, 2006. https://doi:10.1016/j.cryogenics.2005.11.004
  • C. Yilmaz, T. H. Cetin, B. Ozturkmen, M. Kanoglu “Thermodynamic Performance analysis of gas liquefaction cycles for cryogenic applications” J. of Thermal Engineering, (5, (1): pp. 62-75, January 2019. https://doi.org/10.18186/thermal.513038
  • A. T. A. M. de Waele, “Basics of Joule–Thomson Liquefaction and JT Cooling”, J. of Low Temp Phys 186:385–403, 2017. https://doi 10.1007/s10909-016-1733-3
  • M. W. Zemansky, R. H. Dittman, Heat and Thermodynamics: an Intermediate Textbook, 7th ed. New York, McGraw-Hill Companies Inc., pp. 282-284, 1997.
  • G. D. Miller, “Joule-Thomson inversion curve, corresponding states, and simpler equations of state”, Ind. Eng. Chem. Fundamentals 9: 585-589, 1970.
  • R. D. Gunn, P. L. Chueh , J. M. Prausnitz, “Inversion temperatures and pressures for cryogenic gases and their mixtures”, Cryogenics 6: 324-329, 1966.
  • K. Juris, L. A. Wenzel, “A study of inversion curves”, AIChE Journal 18: 684-68, 1972. https://doi.org/ 10.1002/aic.690180404
  • W. G. Dilay, A. R. Heidemann, “Calculation of Joule-Thomson inversion curves from equations of state”, Industrial Eng. Chem. Fundamentals 25: 158-164, 1986. https://doi.org/ 10.1021/i100021a024
  • D. Geana , V. Feroiu, “Calculation of Joule-Thomson inversion curves from a general cubic equation of state”, Fluid Phase Equilibria 77: 121-132, 1992. https//:doi.org/10.1016/0378-3812 (92)85100-M.
  • A. Maghari, S. Matin, “Prediction of Joule-Thomson inversion curves from van der Waals type equations of state”, J. of Chem. Eng. of Japan 30: 520-525, 1997. https://doi.org/10.1252/jcej.30.520
  • C. M. Colina, C. Olivera-Fuentes, “Prediction of the Joule-Thomson inversion curve of air from cubic equations of state”. Cryogenics 38: 721-728, 1998. https//: doi.org/10.1016/S0011-2275(98)00036-8
  • N. S. Matin, B. Haghighi, “Calculation of Joule-Thomson inversion curves from cubic equations of state”. Fluid Phase Equilibria 175: 273-284, 2000. https//: doi.org/10.1016/S0378-3812(00)00443-X
  • B. Haghighi, M. R. Laee , N. S. Matin,“A comparison among five equations of state in predicting the inversion curves of some fluids”, Cryogenics 43: 393-398, 2003.
  • B. Haghighi , M. R. Bozorgmehr, “Joule-Thomson inversion curves calculation by using equation of state”, Asian J. of Chemistry 24: 533-537, 2002.
  • G. S. Soave, “ Equilibrium constants from a modified Redlich-Kwong equation of state”, Chemical Eng. Science 27: 1197-1203, 1972.
  • D. -Y Peng, D. B. Robinson, “ A new two constant equation of state”, Ind. Eng. Chem. Fundamen. vol 15, pp. 59-64, 1976.
  • M. D. Cismondi, J. Mollerup, “Development and application of a three parameter RK-PR equation of state”, Fluid Phase Equilibria 232: 74-89, 2005. https//: doi.org/10.1016/j.fluid.2005.03.020.
  • P. E. Liley, R. C. Reid, E. Buck, “ Physical and Chemical Data in : Perry, R. H. and Green D., Perry’s Chemical Engineers’ Handbook”, 7th Ed. McGraw-Hill Companies Inc., Singapore, pp. 3-109, 3-110, 1984.
  • D. Elwell and A. J. Pointon, Classical Thermodynamics, 1st Ed. Peguin Library of Physical Sciences, p.175, 1972.

Maximum Liquefaction of Gases Revisited

Year 2022, Volume: 25 Issue: 2, 8 - 14, 01.06.2022
https://doi.org/10.5541/ijot.991575

Abstract

Joule-Thomson liquefiers are the commonest machines to liquefy gases. Over the years, countless number of articles have been published on the subject. Dozens of 1st and 2nd law analyses were carried out on Joule-Thomson liquefaction cycles. And yet an aspect of purely theoretical interest seems to have passed unnoticed, namely: for a given volume of gas, what conditions should be fulfilled to achieve maximum liquefaction without considering engineering details of design equipment and the highly irreversible character of work-consuming devices, heat exchangers, heat leaks and the throttling process. This work addressed this issue by applying the 1st law analysis and elementary calculus prescriptions to a simple Linde-Hampson liquefying process. The same approach could be applied to other liquefying cycles. As is well-known, for a given mass flow rate of a gas, maximum fraction liquefied occurs when the pre-cooling temperature, Ti , and initial pressure, Pi , lie on the inversion curve. It has been proved that this is only true if an additional condition is fulfilled. Expressions for it were derived for the van der Waals, RKS and PR equations of state.

References

  • W. Foerg, “History of cryogenics: the epoch of the pioneers from the beginning to the year 1911”, Int. J. of Refrigeration 25: 283-292. https://doi.org/10.1016/S0140-7007(01)00020-2, 2002.
  • J. P. Mosquera 2018 “Applications of Cryogenics: Past, Present, Future – Physics World”, Available : https://physicsworld.com/a/applications-of-cryogenics-past-present-future/2018, 2018.
  • Joule–Thomson effect – Wikipedia. https://pt.wikipedia.org/w/index.php?title=Efeito_Joule-Thomson&oldid=56114263, last update 29 August 2019.
  • C. G. Haseldon, Cryogenics Fundamentals, Academic Press Inc. New York, 1971.
  • M. Mukhopadhyay, Fundamentals of Cryogenic Engineering, PHI Learning, Eastern Economy Edition, Delhi (India), January 2021.
  • T. M. Flynn, Cryogenic Engineering, Marcel Dekker, 2005.
  • R. Barron , Cryogenic Systems, 2nd ed. Oxford Science Publications, Oxord University Press, New York, 1985. Kanoglu, M., Dincer, I., Rosen, M.A., “Performance analysis of gas liquefaction cycles”, Int. J. of Energy Research 32(1): pp 35 – 43, January 2008. https//:doi.org:10.1002/er.1333
  • B.-Z. Maytal, “Maximizing production rates of the Linde–Hampson machine”, Cryogenics 46 : 49–54, 2006. https://doi:10.1016/j.cryogenics.2005.11.004
  • C. Yilmaz, T. H. Cetin, B. Ozturkmen, M. Kanoglu “Thermodynamic Performance analysis of gas liquefaction cycles for cryogenic applications” J. of Thermal Engineering, (5, (1): pp. 62-75, January 2019. https://doi.org/10.18186/thermal.513038
  • A. T. A. M. de Waele, “Basics of Joule–Thomson Liquefaction and JT Cooling”, J. of Low Temp Phys 186:385–403, 2017. https://doi 10.1007/s10909-016-1733-3
  • M. W. Zemansky, R. H. Dittman, Heat and Thermodynamics: an Intermediate Textbook, 7th ed. New York, McGraw-Hill Companies Inc., pp. 282-284, 1997.
  • G. D. Miller, “Joule-Thomson inversion curve, corresponding states, and simpler equations of state”, Ind. Eng. Chem. Fundamentals 9: 585-589, 1970.
  • R. D. Gunn, P. L. Chueh , J. M. Prausnitz, “Inversion temperatures and pressures for cryogenic gases and their mixtures”, Cryogenics 6: 324-329, 1966.
  • K. Juris, L. A. Wenzel, “A study of inversion curves”, AIChE Journal 18: 684-68, 1972. https://doi.org/ 10.1002/aic.690180404
  • W. G. Dilay, A. R. Heidemann, “Calculation of Joule-Thomson inversion curves from equations of state”, Industrial Eng. Chem. Fundamentals 25: 158-164, 1986. https://doi.org/ 10.1021/i100021a024
  • D. Geana , V. Feroiu, “Calculation of Joule-Thomson inversion curves from a general cubic equation of state”, Fluid Phase Equilibria 77: 121-132, 1992. https//:doi.org/10.1016/0378-3812 (92)85100-M.
  • A. Maghari, S. Matin, “Prediction of Joule-Thomson inversion curves from van der Waals type equations of state”, J. of Chem. Eng. of Japan 30: 520-525, 1997. https://doi.org/10.1252/jcej.30.520
  • C. M. Colina, C. Olivera-Fuentes, “Prediction of the Joule-Thomson inversion curve of air from cubic equations of state”. Cryogenics 38: 721-728, 1998. https//: doi.org/10.1016/S0011-2275(98)00036-8
  • N. S. Matin, B. Haghighi, “Calculation of Joule-Thomson inversion curves from cubic equations of state”. Fluid Phase Equilibria 175: 273-284, 2000. https//: doi.org/10.1016/S0378-3812(00)00443-X
  • B. Haghighi, M. R. Laee , N. S. Matin,“A comparison among five equations of state in predicting the inversion curves of some fluids”, Cryogenics 43: 393-398, 2003.
  • B. Haghighi , M. R. Bozorgmehr, “Joule-Thomson inversion curves calculation by using equation of state”, Asian J. of Chemistry 24: 533-537, 2002.
  • G. S. Soave, “ Equilibrium constants from a modified Redlich-Kwong equation of state”, Chemical Eng. Science 27: 1197-1203, 1972.
  • D. -Y Peng, D. B. Robinson, “ A new two constant equation of state”, Ind. Eng. Chem. Fundamen. vol 15, pp. 59-64, 1976.
  • M. D. Cismondi, J. Mollerup, “Development and application of a three parameter RK-PR equation of state”, Fluid Phase Equilibria 232: 74-89, 2005. https//: doi.org/10.1016/j.fluid.2005.03.020.
  • P. E. Liley, R. C. Reid, E. Buck, “ Physical and Chemical Data in : Perry, R. H. and Green D., Perry’s Chemical Engineers’ Handbook”, 7th Ed. McGraw-Hill Companies Inc., Singapore, pp. 3-109, 3-110, 1984.
  • D. Elwell and A. J. Pointon, Classical Thermodynamics, 1st Ed. Peguin Library of Physical Sciences, p.175, 1972.
There are 26 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Rui Pıtanga Marques

P.r.g. Bordoni This is me

M. O. Pınho This is me

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Pıtanga Marques, R., Bordoni, P., & Pınho, M. O. (2022). Maximum Liquefaction of Gases Revisited. International Journal of Thermodynamics, 25(2), 8-14. https://doi.org/10.5541/ijot.991575
AMA Pıtanga Marques R, Bordoni P, Pınho MO. Maximum Liquefaction of Gases Revisited. International Journal of Thermodynamics. June 2022;25(2):8-14. doi:10.5541/ijot.991575
Chicago Pıtanga Marques, Rui, P.r.g. Bordoni, and M. O. Pınho. “Maximum Liquefaction of Gases Revisited”. International Journal of Thermodynamics 25, no. 2 (June 2022): 8-14. https://doi.org/10.5541/ijot.991575.
EndNote Pıtanga Marques R, Bordoni P, Pınho MO (June 1, 2022) Maximum Liquefaction of Gases Revisited. International Journal of Thermodynamics 25 2 8–14.
IEEE R. Pıtanga Marques, P. Bordoni, and M. O. Pınho, “Maximum Liquefaction of Gases Revisited”, International Journal of Thermodynamics, vol. 25, no. 2, pp. 8–14, 2022, doi: 10.5541/ijot.991575.
ISNAD Pıtanga Marques, Rui et al. “Maximum Liquefaction of Gases Revisited”. International Journal of Thermodynamics 25/2 (June 2022), 8-14. https://doi.org/10.5541/ijot.991575.
JAMA Pıtanga Marques R, Bordoni P, Pınho MO. Maximum Liquefaction of Gases Revisited. International Journal of Thermodynamics. 2022;25:8–14.
MLA Pıtanga Marques, Rui et al. “Maximum Liquefaction of Gases Revisited”. International Journal of Thermodynamics, vol. 25, no. 2, 2022, pp. 8-14, doi:10.5541/ijot.991575.
Vancouver Pıtanga Marques R, Bordoni P, Pınho MO. Maximum Liquefaction of Gases Revisited. International Journal of Thermodynamics. 2022;25(2):8-14.