Research Article
BibTex RIS Cite

Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene

Year 2022, Volume: 25 Issue: 3, 55 - 62, 01.09.2022
https://doi.org/10.5541/ijot.1108782

Abstract

Temperature dependences of the free energy (F), entropy (S) and the heat capacity (C_v) are calculated (P=0) for the organic compounds (solid benzene, naphthalene and anthracene) by using the quasiharmonic approximation. Contributions to those thermodynamic functions due to the Raman frequencies of lattice modes (solid benzene), librational modes (naphthalene), phonons and vibrons (anthracene) are taken into account in our calculations. We obtain that similar linear increase of F and nonlinear increase of S and C_v, occur with the increasing temperature in benzene and naphthalene. This linear (F) and nonlinear (S, C_v) increase is rather different for anthracene as the molecular structure becomes complex (benzene-naphthalene-anthracene), as expected. Our calculations by the quasiharmonic approximation can be compared with the experiments for those organic compounds.

References

  • G. A. Olah and Á. Molnár, Hydrocarbon Chemistry (Wiley Interscience, Hoboken, NJ, 2003).
  • P. Figuiere, A. H. Fuchs, M. Ghelfenstein & H. Szwarc, ‘Pressure-volume-temperature relations for crystalline benzene.’ Journal of Physics and Chemistry of Solids, 39, 19-24, 1978.
  • M. M. Thiery and J. M. Leger. "High pressure solid phases of benzene. I. Raman and x‐ray studies of C6H6 at 294 K up to 25 GPa." The Journal of chemical physics, 89, 4255-4271, 1988.
  • L. Ciabini, F. A. Gorelli, M. Santoro, R. Bini, V. Schettino & M. Mezouar, ‘High-pressure and high-temperature equation of state and phase diagram of solid benzene.’ Physical Review B, 72, 1-7, 2005.
  • R. G. Ross, P. Andersson & G. Bäckström, ‘Thermal conductivity and heat capacity of solid phases of benzene under pressure.’ Molecular Physics, 38, 377-385, 1979.
  • R. G. Ross, P. Andersson & G. Bäckström, ‘Thermal conductivity and heat capacity of benzene, naphthalene and anthracene under pressure.’ Molecular Physics, 38, 527-533, 1979.
  • N. Sallamie & J.M. Shaw, ‘Heat capacity prediction for polynuclear aromatic solids using vibration spectra.’ Fluid phase equilibria, 237, 100-110, 2005.
  • P. Pruzan, D. H. Liebenberg & R. L. Mills, ‘Experimental evidence for a second-order transformation prior to melting in ammonia, organic compounds and ice I.’ Journal of Physics and Chemistry of Solids, 47, 949-961, 1986. S. Block, C.E. Weir & G. J. Piermarini, ‘Polymorphism in benzene, naphthalene, and anthracene at high pressure.’ Science, 169, 586-587, 1970.
  • J. Akella & G. C. Kennedy, ‘Phase diagram of benzene to 35 kbar.’ The Journal of Chemical Physics, 55, 793-796, 1971.
  • F. Cansell, D. Fabre & J.P. Petitet,’ Phase transitions and chemical transformations of benzene up to 550 C and 30 GPa.’ The Journal of chemical physics, 99, 7300-7304, 1993.
  • H. Yurtseven & E. Sevinç, Pressure dependence of the thermodynamic quantities in phase II of solid benzene. High Temperature Materials and Processes, 32, 421-425, 2013.
  • H. Yurtseven & K. Savaş, Temperature dependence of the thermodynamic quantities near the solid I-II phase transition in benzene. J Single Mol Res, 2, 67, 2014.
  • O. Tari & H. Yurtseven, ‘Variation of the molar volume with the temperature and the Pıppard relations near the melting point in benzene.’ Journal of Molecular Liquids, 220, 883-887, 2016.
  • E. G. Cox, ‘Crystal structure of benzene.’ Reviews of Modern Physics, 30, 159,1958.
  • Y. A. Sataty, A. Ron & M. Brith, ‘Far-infrared lattice vibrations of crystalline benzene.’ Chemical Physics Letters, 23, 500-503,1973.
  • P. Pruzan, J. C. Chervin, M. M. Thiery, J. P. Itie, J. M. Besson, J.P. Forgerit & M. Revault, ‘Transformation of benzene to a polymer after static pressurization to 30 GPa.’ The Journal of chemical physics, 92, 6910-6915, 1990.
  • L. Ciabini, M. Santoro, R. Bini & V. Schettino, ‘High pressure photoinduced ring opening of benzene.’ Physical review letters, 88, 1-4, 2002.
  • L. Ciabini, M. Santoro, F. A. Gorelli, R. Bini, V. Schettino & S. Raugei, ‘Triggering dynamics of the high-pressure benzene amorphization.’ Nature materials, 6, 39-43, 2007.
  • M. Citroni, R. Bini, P. Foggi & V. Schettino, ‘Role of excited electronic states in the high-pressure amorphization of benzene.’ Proceedings of the National Academy of Sciences, 105, 7658-7663, 2008.
  • Ghelfenstein & H. Szwarc, ‘Raman Spectra in Molecular Solids I. A study of Low Frequency Modes as a Funcit of Temperature.’ Molecular Crystals and Liquid Crystals, 14, 273-281, 1971.
  • Ö. Tari, H. Yurtseven, ‘Raman frequencies calculated at various pressures in phase I of benzene’, J. Korean Chem. Soc. 57 ,204-209,2013.
  • Ö. Tari, H. Yurtseven,’Calculation of the Raman frequencies as a function of temperature in phase I of benzene,’ J. Ind. Chem. Soc., 90 ,821-824,2013.
  • A. Gobbi, Y. Yamaguchi, G. Frenking, H. F. Schaefer, ‘The role of σ and π stabilization in benzene, allyl cation and allyl anion. A canonical orbital energy derivative study.’ Chemical Physics Letters, 244, 27-31, 1995.
  • A. G. Csaszar, W. D. Allen, H. F. Schaefer III, ‘In pursuit of the ab initio limit for conformational energy prototypes,’ J. Chem. Phys., doi.org/10.1063/1.476449.
  • Y. Xie, H. F. Schaefer III, F. A. Cotton,’ The radical anions and the electron affinities of perfluorinated benzene,naphthaline and anthracene,’ Chem. Commun. 20 ,102,2013.
  • D. Moran, A. C. Simmonett, F. E. Leach, W. D. Allen, P. V. R. Schleyer & H. F. Schaefer, ‘Popular theoretical methods predict benzene and arenes to be nonplanar.’ Journal of the American Chemical Society, 128, 9342-9343, 2006.
  • R. Engelke, P. J. Hay, D. A. Kleier, W. R. Wadt, ‘A theoretical study of possible benzene dimerizations under high‐pressure conditions.’ The Journal of chemical physics, 79, 4367-4375, 1983.
  • A. D. Chanyshev, K. D. Litasov, S. V. Rashchenko, Y. Higo, ‘High-pressure-high-temperature study of benzene, refined crystal structure and new phase diagram up to 8 GPa and 923 K’, Crystal Growth Design, doi.org/10.1021/acs.cgd.8b00125.
  • Y. Zhou, R Patterson., P. A. Williams, B. M. Kariuki, C. E. Hughes, R. Samanta, and K. D. Harris, ‘Temperature-dependent structural properties, phase transition behavior, and dynamic properties of a benzene derivative in the solid state’, Crystal Growth & Design, 19, 2155-2162, 2019.
  • C. A.McConville, Y. Tao, H. A. Evens, B. A. Trump, J. B. Lefton, W. Xu, A. A. Yakovenko, E. Kraka, C. M. Brown, T. Runcevski, ‘Peritectic phase transition of benzene and acetonitrite into a corystal relevant to Titan, Saturn’s moon’, ChemComm 56, 13520-13523, 2020.
  • B. Ibrahimoglu, D. Uner, A. Veziroglu, F. Karakaya, B. Ibrahimoglu, ‘Construction of phase diagram to estimate phase transitions at high pressures: a critical point at the solid liquid transition for benzene’, Int. J. Hydrogen Energy, 46, 15168-15180, 2021.
  • U. Rao, S. Chaurasin, A. K. Mishra, J. Pasley, ‘Phase tansitions in benzene under dynamic and static compression, J. Raman Spectroscopy, 52, 770-781, 2021.
  • J.P. McCullough, H.L. Finke, J.F. Messerly, S.S. Todd, T.C. Kincheloe, G. Waddington, ‘The low-temperature thermodynamic properties of naphthalene, l-methylnaphthalene, 2-methylnaphthalene, 1, 2, 3, 4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene.’ The Journal of Physical Chemistry, 61, 1105-1116, 1957.
  • R.D. Chirico, S.E. Knipmeyer, W.V. Steele, ‘Heat capacities, enthalpy increments, and derived thermodynamic functions for naphthalene between the temperatures 5 K and 440 K.’ The Journal of Chemical Thermodynamics, 34, 1873-1884, 2002.
  • D.A. Dows, L. Hsu, S.S. Mitra, O. Brafman, M. Hayek, W.B. Daniels, R.K. Crawford, ‘Pressure dependence of the lattice frequencies of anthracene and naphthalene.’ Chemical Physics Letters, 22, 595-599, 1973.
  • E.F. Sheka, E.L. Bokhenkov, B. Dorner, J. Kalus, G.A. Mackenzie, I. Natkaniec, G.S.Pawley, U. Schmelzer, ‘Anharmonicity of phonons in crystalline naphthalene.’ Journal of Physics C: Solid State Physics, 17, 5893-5914, 1984.
  • S.C. Capelli, A. Albinati, S.A. Mason, B.T.M. Willis, ‘Molecular motion in crystalline naphthalene: analysis of multi-temperature X-ray and neutron diffraction data.’ The Journal of Physical Chemistry A, 110, 11695-11703, 2006.
  • R.F. Della Valle, E. Venuti, A. Brillante, ‘Pressure and temperature effects in lattice dynamics: the case of naphthalene.’ Chemical physics, 198, 79-89, 1995.
  • M. Fukuhara, A. H. Matsui, M. Takeshima, ‘Low- temperature elastic anomalies in an anthracene single crystal.’ Chemical Physics, 258, 97-106, 2000.
  • M. Oehzelt, G. Heimel, R. Resel, P. Puschnig, K. Hummer, C. A. Draxl, K. Takemura K, A. Nakayama, ‘High pressure x-ray study on anthracene.’ The Journal of chemical physics, 119, 1078-1084, 2003.
  • C. M. Gramaccioli, G. Flippini, M. Simonetta, S. Ramdos, G. M. Parkinson, J. M. Thomas, ‘Structure and dynamics of a new phase of anthracene.’ Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 76, 1336-1346, 1980.
  • K. Hummer, P. Puschnig, C. A. Draxl, ‘Ab initio study of anthracene under high pressure.’ Physical Review B, 67, 1-7, 2003.
  • R. Resei, M. Oehzeit, K. Shimizu, A. Nakayama, ‘On the phase transition in anthraceneinduced by high pressure’, Solid State Commun., 129, 103-106, 2004.
  • D. Liu, J. P. Lang, B. F. Abrahams, ‘ Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal to single crystal transformation’, J. Am. Chem. Soc., 133, 11042-11045, 2011.
  • J. A. Lee, H. Rösner, J. P. Corrigan, Y. Huang, ‘Phase transitions of naphthalene and its derivatives confined in mesoporous silicas’, J. Phys. Chem. C, 115, 4738-4748, 2011.
  • C. Fontanesi, ‘Entropy variation in the two-dimensional phase transition of anthracene adsorbed at the Hg electrode/ethylene glycol solution interface’, Entropy, 12, 570-577, 2010.
  • D. S. N. Parker, F. Zhang, Y. K. Kim, A. G. G. M. Treleris, ‘Low temperature formation of naphthalene and its role in the synthesis of PAHs (polycylic aromatic hydrocarbons) in the interstellar medium’, PNAS, 109, 53-58, 2011.
  • A. V. Likhacheva, S. V. Rashchenko, A. D. Chanyshev, T. M. Inerbaev, K. D. Litasov, D. S. Kilin, ‘Thermal equation of state of solid naphthalene to 13 GPa and 773 K: in situ X-ray diffraction study and first principles calculations’, J. Chem. Phys., doi.org/10.1063/1.4871741.
  • L. Yang, H. Peng, X. Ling, H. Dong, ‘ Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate-fin unit’, Heat Mass Transfer, 31, 195-207, 2015.
  • H. Özdemir and H. Yurtseven, ‘Raman frequency shifts calculated from the volume data in naphthalene.’ Journal of Molecular Structure, 1090, 65-69, 2015
  • H. Özdemir and H. Yurtseven, ‘Temperature and pressure dependence of the Raman frequency shifts in anthracene.’ Indian Journal of Pure & Applied Physics, 54, 489- 494, 2016.
  • A. D. Chanyshev, K. D. Litasov, A. Shatskiy and I. Sharygin, ‘Transititon from melting to carbonization of naphthalene, anthracene, pyrene and coronene at high pressure’, Phys. Earth Planetary Interiors, doi.org/10.1016/j.pepi.2017.06.011.
  • T. L. Prazyan, Y. N. Zhuraviev, ‘Ab initio study of naphthalene and anthracene elastic properties’, Int. J.Mod.Phys.C,doi.org/10.1142/S0129183118500249
  • Y. Hino, T. Matsuo and S. Hayashi, ‘ Structural phase transitions in anthracene crystals’, Plus Chem, doi.org/10.1002/cplu.202200157.
  • Ji-X. Hu, Q. Li, H. L. Zhu, Z. Ni. Gao, Q. Zhang, T. Li, G.-M. Wang, ‘Achieving large thermal hysteresis in an anthracene-based manganese (II) complex via photo-induced electron transfer’, Nature Commun., 13, 1-9, 2022.
  • W. M. Zoghaib, C. Carboni, M. E. Molla, S. Al-Mahrezi, T. Al-Slahumi, S. Al-Badi, M. Al-Farsi, ‘Phase transition investigations of a series of aromatic naphthalene-2-yl-4-(alkoxy) benzoate and naphthalene-1-yl-4-(alkoxy) benzoate materials’, World J. Cond. Matter. Phys., 12, 1-7, 2022.
  • L. Zhao, B. J. Baer, E. L. Chronister, ‘High-pressure Raman study of anthracene.’ The Journal of Physical Chemistry A, 103, 1728-1733, 1999.
  • H. Yurtseven and H. Özdemir, ‘Calculation of the specific heat using the Raman frequency shifts for the solid I–II transition in benzene.’ Journal of Molecular Structure, 1090, 53-57, 2015.
  • F. D. Medina, ‘Temperature dependence of the far IR spectrum of α‐N2.’ The Journal of Chemical Physics, 72, 5760-5762, 1980.
  • H. Özdemir and H. Yurtseven, ‘Pressure dependence of the Raman frequencies for the modes I, II and III at constant temperatures in phase II of benzene’, Journal of Molecular Structure, 1080, 117-121, 2015.
Year 2022, Volume: 25 Issue: 3, 55 - 62, 01.09.2022
https://doi.org/10.5541/ijot.1108782

Abstract

References

  • G. A. Olah and Á. Molnár, Hydrocarbon Chemistry (Wiley Interscience, Hoboken, NJ, 2003).
  • P. Figuiere, A. H. Fuchs, M. Ghelfenstein & H. Szwarc, ‘Pressure-volume-temperature relations for crystalline benzene.’ Journal of Physics and Chemistry of Solids, 39, 19-24, 1978.
  • M. M. Thiery and J. M. Leger. "High pressure solid phases of benzene. I. Raman and x‐ray studies of C6H6 at 294 K up to 25 GPa." The Journal of chemical physics, 89, 4255-4271, 1988.
  • L. Ciabini, F. A. Gorelli, M. Santoro, R. Bini, V. Schettino & M. Mezouar, ‘High-pressure and high-temperature equation of state and phase diagram of solid benzene.’ Physical Review B, 72, 1-7, 2005.
  • R. G. Ross, P. Andersson & G. Bäckström, ‘Thermal conductivity and heat capacity of solid phases of benzene under pressure.’ Molecular Physics, 38, 377-385, 1979.
  • R. G. Ross, P. Andersson & G. Bäckström, ‘Thermal conductivity and heat capacity of benzene, naphthalene and anthracene under pressure.’ Molecular Physics, 38, 527-533, 1979.
  • N. Sallamie & J.M. Shaw, ‘Heat capacity prediction for polynuclear aromatic solids using vibration spectra.’ Fluid phase equilibria, 237, 100-110, 2005.
  • P. Pruzan, D. H. Liebenberg & R. L. Mills, ‘Experimental evidence for a second-order transformation prior to melting in ammonia, organic compounds and ice I.’ Journal of Physics and Chemistry of Solids, 47, 949-961, 1986. S. Block, C.E. Weir & G. J. Piermarini, ‘Polymorphism in benzene, naphthalene, and anthracene at high pressure.’ Science, 169, 586-587, 1970.
  • J. Akella & G. C. Kennedy, ‘Phase diagram of benzene to 35 kbar.’ The Journal of Chemical Physics, 55, 793-796, 1971.
  • F. Cansell, D. Fabre & J.P. Petitet,’ Phase transitions and chemical transformations of benzene up to 550 C and 30 GPa.’ The Journal of chemical physics, 99, 7300-7304, 1993.
  • H. Yurtseven & E. Sevinç, Pressure dependence of the thermodynamic quantities in phase II of solid benzene. High Temperature Materials and Processes, 32, 421-425, 2013.
  • H. Yurtseven & K. Savaş, Temperature dependence of the thermodynamic quantities near the solid I-II phase transition in benzene. J Single Mol Res, 2, 67, 2014.
  • O. Tari & H. Yurtseven, ‘Variation of the molar volume with the temperature and the Pıppard relations near the melting point in benzene.’ Journal of Molecular Liquids, 220, 883-887, 2016.
  • E. G. Cox, ‘Crystal structure of benzene.’ Reviews of Modern Physics, 30, 159,1958.
  • Y. A. Sataty, A. Ron & M. Brith, ‘Far-infrared lattice vibrations of crystalline benzene.’ Chemical Physics Letters, 23, 500-503,1973.
  • P. Pruzan, J. C. Chervin, M. M. Thiery, J. P. Itie, J. M. Besson, J.P. Forgerit & M. Revault, ‘Transformation of benzene to a polymer after static pressurization to 30 GPa.’ The Journal of chemical physics, 92, 6910-6915, 1990.
  • L. Ciabini, M. Santoro, R. Bini & V. Schettino, ‘High pressure photoinduced ring opening of benzene.’ Physical review letters, 88, 1-4, 2002.
  • L. Ciabini, M. Santoro, F. A. Gorelli, R. Bini, V. Schettino & S. Raugei, ‘Triggering dynamics of the high-pressure benzene amorphization.’ Nature materials, 6, 39-43, 2007.
  • M. Citroni, R. Bini, P. Foggi & V. Schettino, ‘Role of excited electronic states in the high-pressure amorphization of benzene.’ Proceedings of the National Academy of Sciences, 105, 7658-7663, 2008.
  • Ghelfenstein & H. Szwarc, ‘Raman Spectra in Molecular Solids I. A study of Low Frequency Modes as a Funcit of Temperature.’ Molecular Crystals and Liquid Crystals, 14, 273-281, 1971.
  • Ö. Tari, H. Yurtseven, ‘Raman frequencies calculated at various pressures in phase I of benzene’, J. Korean Chem. Soc. 57 ,204-209,2013.
  • Ö. Tari, H. Yurtseven,’Calculation of the Raman frequencies as a function of temperature in phase I of benzene,’ J. Ind. Chem. Soc., 90 ,821-824,2013.
  • A. Gobbi, Y. Yamaguchi, G. Frenking, H. F. Schaefer, ‘The role of σ and π stabilization in benzene, allyl cation and allyl anion. A canonical orbital energy derivative study.’ Chemical Physics Letters, 244, 27-31, 1995.
  • A. G. Csaszar, W. D. Allen, H. F. Schaefer III, ‘In pursuit of the ab initio limit for conformational energy prototypes,’ J. Chem. Phys., doi.org/10.1063/1.476449.
  • Y. Xie, H. F. Schaefer III, F. A. Cotton,’ The radical anions and the electron affinities of perfluorinated benzene,naphthaline and anthracene,’ Chem. Commun. 20 ,102,2013.
  • D. Moran, A. C. Simmonett, F. E. Leach, W. D. Allen, P. V. R. Schleyer & H. F. Schaefer, ‘Popular theoretical methods predict benzene and arenes to be nonplanar.’ Journal of the American Chemical Society, 128, 9342-9343, 2006.
  • R. Engelke, P. J. Hay, D. A. Kleier, W. R. Wadt, ‘A theoretical study of possible benzene dimerizations under high‐pressure conditions.’ The Journal of chemical physics, 79, 4367-4375, 1983.
  • A. D. Chanyshev, K. D. Litasov, S. V. Rashchenko, Y. Higo, ‘High-pressure-high-temperature study of benzene, refined crystal structure and new phase diagram up to 8 GPa and 923 K’, Crystal Growth Design, doi.org/10.1021/acs.cgd.8b00125.
  • Y. Zhou, R Patterson., P. A. Williams, B. M. Kariuki, C. E. Hughes, R. Samanta, and K. D. Harris, ‘Temperature-dependent structural properties, phase transition behavior, and dynamic properties of a benzene derivative in the solid state’, Crystal Growth & Design, 19, 2155-2162, 2019.
  • C. A.McConville, Y. Tao, H. A. Evens, B. A. Trump, J. B. Lefton, W. Xu, A. A. Yakovenko, E. Kraka, C. M. Brown, T. Runcevski, ‘Peritectic phase transition of benzene and acetonitrite into a corystal relevant to Titan, Saturn’s moon’, ChemComm 56, 13520-13523, 2020.
  • B. Ibrahimoglu, D. Uner, A. Veziroglu, F. Karakaya, B. Ibrahimoglu, ‘Construction of phase diagram to estimate phase transitions at high pressures: a critical point at the solid liquid transition for benzene’, Int. J. Hydrogen Energy, 46, 15168-15180, 2021.
  • U. Rao, S. Chaurasin, A. K. Mishra, J. Pasley, ‘Phase tansitions in benzene under dynamic and static compression, J. Raman Spectroscopy, 52, 770-781, 2021.
  • J.P. McCullough, H.L. Finke, J.F. Messerly, S.S. Todd, T.C. Kincheloe, G. Waddington, ‘The low-temperature thermodynamic properties of naphthalene, l-methylnaphthalene, 2-methylnaphthalene, 1, 2, 3, 4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene.’ The Journal of Physical Chemistry, 61, 1105-1116, 1957.
  • R.D. Chirico, S.E. Knipmeyer, W.V. Steele, ‘Heat capacities, enthalpy increments, and derived thermodynamic functions for naphthalene between the temperatures 5 K and 440 K.’ The Journal of Chemical Thermodynamics, 34, 1873-1884, 2002.
  • D.A. Dows, L. Hsu, S.S. Mitra, O. Brafman, M. Hayek, W.B. Daniels, R.K. Crawford, ‘Pressure dependence of the lattice frequencies of anthracene and naphthalene.’ Chemical Physics Letters, 22, 595-599, 1973.
  • E.F. Sheka, E.L. Bokhenkov, B. Dorner, J. Kalus, G.A. Mackenzie, I. Natkaniec, G.S.Pawley, U. Schmelzer, ‘Anharmonicity of phonons in crystalline naphthalene.’ Journal of Physics C: Solid State Physics, 17, 5893-5914, 1984.
  • S.C. Capelli, A. Albinati, S.A. Mason, B.T.M. Willis, ‘Molecular motion in crystalline naphthalene: analysis of multi-temperature X-ray and neutron diffraction data.’ The Journal of Physical Chemistry A, 110, 11695-11703, 2006.
  • R.F. Della Valle, E. Venuti, A. Brillante, ‘Pressure and temperature effects in lattice dynamics: the case of naphthalene.’ Chemical physics, 198, 79-89, 1995.
  • M. Fukuhara, A. H. Matsui, M. Takeshima, ‘Low- temperature elastic anomalies in an anthracene single crystal.’ Chemical Physics, 258, 97-106, 2000.
  • M. Oehzelt, G. Heimel, R. Resel, P. Puschnig, K. Hummer, C. A. Draxl, K. Takemura K, A. Nakayama, ‘High pressure x-ray study on anthracene.’ The Journal of chemical physics, 119, 1078-1084, 2003.
  • C. M. Gramaccioli, G. Flippini, M. Simonetta, S. Ramdos, G. M. Parkinson, J. M. Thomas, ‘Structure and dynamics of a new phase of anthracene.’ Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 76, 1336-1346, 1980.
  • K. Hummer, P. Puschnig, C. A. Draxl, ‘Ab initio study of anthracene under high pressure.’ Physical Review B, 67, 1-7, 2003.
  • R. Resei, M. Oehzeit, K. Shimizu, A. Nakayama, ‘On the phase transition in anthraceneinduced by high pressure’, Solid State Commun., 129, 103-106, 2004.
  • D. Liu, J. P. Lang, B. F. Abrahams, ‘ Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal to single crystal transformation’, J. Am. Chem. Soc., 133, 11042-11045, 2011.
  • J. A. Lee, H. Rösner, J. P. Corrigan, Y. Huang, ‘Phase transitions of naphthalene and its derivatives confined in mesoporous silicas’, J. Phys. Chem. C, 115, 4738-4748, 2011.
  • C. Fontanesi, ‘Entropy variation in the two-dimensional phase transition of anthracene adsorbed at the Hg electrode/ethylene glycol solution interface’, Entropy, 12, 570-577, 2010.
  • D. S. N. Parker, F. Zhang, Y. K. Kim, A. G. G. M. Treleris, ‘Low temperature formation of naphthalene and its role in the synthesis of PAHs (polycylic aromatic hydrocarbons) in the interstellar medium’, PNAS, 109, 53-58, 2011.
  • A. V. Likhacheva, S. V. Rashchenko, A. D. Chanyshev, T. M. Inerbaev, K. D. Litasov, D. S. Kilin, ‘Thermal equation of state of solid naphthalene to 13 GPa and 773 K: in situ X-ray diffraction study and first principles calculations’, J. Chem. Phys., doi.org/10.1063/1.4871741.
  • L. Yang, H. Peng, X. Ling, H. Dong, ‘ Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate-fin unit’, Heat Mass Transfer, 31, 195-207, 2015.
  • H. Özdemir and H. Yurtseven, ‘Raman frequency shifts calculated from the volume data in naphthalene.’ Journal of Molecular Structure, 1090, 65-69, 2015
  • H. Özdemir and H. Yurtseven, ‘Temperature and pressure dependence of the Raman frequency shifts in anthracene.’ Indian Journal of Pure & Applied Physics, 54, 489- 494, 2016.
  • A. D. Chanyshev, K. D. Litasov, A. Shatskiy and I. Sharygin, ‘Transititon from melting to carbonization of naphthalene, anthracene, pyrene and coronene at high pressure’, Phys. Earth Planetary Interiors, doi.org/10.1016/j.pepi.2017.06.011.
  • T. L. Prazyan, Y. N. Zhuraviev, ‘Ab initio study of naphthalene and anthracene elastic properties’, Int. J.Mod.Phys.C,doi.org/10.1142/S0129183118500249
  • Y. Hino, T. Matsuo and S. Hayashi, ‘ Structural phase transitions in anthracene crystals’, Plus Chem, doi.org/10.1002/cplu.202200157.
  • Ji-X. Hu, Q. Li, H. L. Zhu, Z. Ni. Gao, Q. Zhang, T. Li, G.-M. Wang, ‘Achieving large thermal hysteresis in an anthracene-based manganese (II) complex via photo-induced electron transfer’, Nature Commun., 13, 1-9, 2022.
  • W. M. Zoghaib, C. Carboni, M. E. Molla, S. Al-Mahrezi, T. Al-Slahumi, S. Al-Badi, M. Al-Farsi, ‘Phase transition investigations of a series of aromatic naphthalene-2-yl-4-(alkoxy) benzoate and naphthalene-1-yl-4-(alkoxy) benzoate materials’, World J. Cond. Matter. Phys., 12, 1-7, 2022.
  • L. Zhao, B. J. Baer, E. L. Chronister, ‘High-pressure Raman study of anthracene.’ The Journal of Physical Chemistry A, 103, 1728-1733, 1999.
  • H. Yurtseven and H. Özdemir, ‘Calculation of the specific heat using the Raman frequency shifts for the solid I–II transition in benzene.’ Journal of Molecular Structure, 1090, 53-57, 2015.
  • F. D. Medina, ‘Temperature dependence of the far IR spectrum of α‐N2.’ The Journal of Chemical Physics, 72, 5760-5762, 1980.
  • H. Özdemir and H. Yurtseven, ‘Pressure dependence of the Raman frequencies for the modes I, II and III at constant temperatures in phase II of benzene’, Journal of Molecular Structure, 1080, 117-121, 2015.
There are 60 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Research Articles
Authors

Hamit Yurtseven

Hilal Özdemir

Publication Date September 1, 2022
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Yurtseven, H., & Özdemir, H. (2022). Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene. International Journal of Thermodynamics, 25(3), 55-62. https://doi.org/10.5541/ijot.1108782
AMA Yurtseven H, Özdemir H. Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene. International Journal of Thermodynamics. September 2022;25(3):55-62. doi:10.5541/ijot.1108782
Chicago Yurtseven, Hamit, and Hilal Özdemir. “Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene”. International Journal of Thermodynamics 25, no. 3 (September 2022): 55-62. https://doi.org/10.5541/ijot.1108782.
EndNote Yurtseven H, Özdemir H (September 1, 2022) Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene. International Journal of Thermodynamics 25 3 55–62.
IEEE H. Yurtseven and H. Özdemir, “Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene”, International Journal of Thermodynamics, vol. 25, no. 3, pp. 55–62, 2022, doi: 10.5541/ijot.1108782.
ISNAD Yurtseven, Hamit - Özdemir, Hilal. “Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene”. International Journal of Thermodynamics 25/3 (September 2022), 55-62. https://doi.org/10.5541/ijot.1108782.
JAMA Yurtseven H, Özdemir H. Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene. International Journal of Thermodynamics. 2022;25:55–62.
MLA Yurtseven, Hamit and Hilal Özdemir. “Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene”. International Journal of Thermodynamics, vol. 25, no. 3, 2022, pp. 55-62, doi:10.5541/ijot.1108782.
Vancouver Yurtseven H, Özdemir H. Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene. International Journal of Thermodynamics. 2022;25(3):55-62.