Research Article
BibTex RIS Cite

The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya

Year 2023, Volume: 26 Issue: 4, 1 - 10, 01.12.2023
https://doi.org/10.5541/ijot.1293271

Abstract

In the southern part of Libya, there are a number of power plants and other large industrial developments using their power systems, such as petroleum fields. Gas turbines are frequently employed due to water scarcity in the region, such as the Asrir field power plant. However, fuel transportation is ‎one ‎of the main difficulties regarding cost and safety. The annual cost of fuel operation and ‎transportation ‎is admitted to be very high; therefore, this work ‎aims to utilize ‎solar energy potential to reduce fuel consumption. In this context, a power plant that is currently in operation in Libya, which is ‎located close to the Sahara Desert in the southwestern region, was selected as a case study. The ‎region was chosen because it offers extraordinary conditions for the establishment of concentrated power plants. Simulations studies were carried out at full load considering the nature of the solar flux that varies with the ‎meteorological conditions and the thermodynamic calculations were made based on algebraic equations describing the power cycle and the ‎solar field. In addition, the feasibility of fulfilling the power cycle's energy required using the ‎CSPs system was also analyzed‎. The annual behavior of the solar field was determined using hourly data within the system advisor model (SAM) software. In order to examine the possibility of fuel reduction, the cost of fuel was linked with an exergy analysis from an economic perspective. The ‎findings revelated ‎that the plant ‎efficiency could be increased and the fuel mass rate ratio could be reduced by preheating the air temperature entering the combustion chamber.‎ The air/fuel ratio at the combustor was found 43, the design heat energy required to deliver to the combustion chamber is 414.4MW, and the energetic thermal efficiency of the power cycle is 32.6%. The thermal power design of the solar field is 532MW when average direct irradiation is equal to 1000kWh/m².

References

  • I. A. S. Ehtiwesh, F. Neto Da Silva, and A. C. M. Sousa, “Deployment of parabolic trough concentrated solar power plants in North Africa – a case study for Libya,” Int. J. Green Energy, Oct. 2018, doi:10.1080/15435075.2018.1533474.
  • I. A. S. Ehtiwesh, M. C. Coelho, and A. C. M. Sousa, “Exergetic and environmental life cycle assessment analysis of concentrated solar power plants,” Renew. Sustain. Energy Rev., vol. 56, pp. 145–155, 2016, doi:10.1016/j.rser.2015.11.066.
  • M. Muñoz and J. Muñoz-ant, “Comparison of Different Technologies for Integrated Solar Combined Cycles : Analysis of Concentrating Technology and Solar Integration,” MDPI, Energies, 2018, doi:10.3390/en11051064.
  • H. Derbal, S. Bouaichaoui, N. El-Gharbi, M. Belhamel, and A. Benzaoui, “Modeling and numerical simulation of an integrated solar combined cycle system in Algeria,” Procedia Eng., vol. 33, pp. 199–208, Jan. 2012, doi.org/10.1016/j.proeng.2012.01.1194.
  • A. Al Hariri, S. Selimli, and H. Dumrul, “Effectiveness of heat sink fin position on photovoltaic thermal collector cooling supported by paraffin and steel foam: An experimental study,” Appl. Therm. Eng., vol. 213, no. June, p. 118784, 2022, doi:10.1016/j.applthermaleng.2022.118784.
  • A. Abdel Dayem, M. Metwally, A. Alghamdi, and E. Marzouk, “Numerical simulation and experimental validation of integrated solar combined power plant,” Energy Procedia, vol. 50, pp. 290–305, 2014, doi.org/10.1016/j.egypro.2014.06.036.
  • A. Poullikkas, “Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region - A case study for the island of Cyprus,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2474–2484, Dec. 2009, doi.org/10.1016/j.rser.2009.03.014.
  • M. Mashena and N. Alkishriwi, “Concentrated Solar Power Potential in Libya,” JASE, vol. 11, no. 1, pp. 56–72, 2017.
  • B. Belgasim, Y. Aldali, M. J. R. Abdunnabi, G. Hashem, and K. Hossin, “The potential of concentrating solar power (CSP) for electricity generation in Libya,” Renew. Sustain. Energy Rev., vol. 90, no. March, pp. 1–15, 2018, doi:10.1016/j.rser.2018.03.045.
  • T. E. Boukelia, M. S. Mecibah, B. N. Kumar, and K. S. Reddy, “Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions,” Energy Convers. Manag., vol. 101, pp. 450–459, 2015, doi:10.1016/j.enconman.2015.05.067.
  • I. Ehtiwesh, F. Neto da Silva, and A. Sousa, “Performance and economic analysis of concentrated solar power plants in Libya,” in 2nd International Conference on Energy and Environment: bringing together Engineering and Economics, 2015, pp. 459–66.
  • M. Balghouthi, S. E. Trabelsi, M. Ben Amara, A. B. H. Ali, and A. Guizani, “Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe,” Renew. Sustain. Energy Rev., vol. 56, pp. 1227–1248, 2016, doi:10.1016/j.rser.2015.12.052.
  • O. M. J. Jasim, S. Selimli, H. Dumrul, and S. Yilmaz, “Closed-loop aluminium oxide nanofluid cooled photovoltaic thermal collector energy and exergy analysis, an experimental study,” J. Energy Storage, vol. 50, no. April, pp. 1–9, 2022, doi:10.1016/j.est.2022.104654
  • B. A. A. Yousef et al., “Perspective on integration of concentrated solar power plants,” no. April, pp. 1098–1125, 2021.
  • K. Kitzmiller, “Effect of Variable Guide Vanes and Natural Gas Hybridization for Accommodating Fluctuations in Solar Input to a Gas Turbine,” vol. 134, no. November 2012, pp. 1–12, 2016, doi:10.1115/1.4006894.
  • M. Livshits and A. Kribus, “Solar hybrid steam injection gas turbine ( STIG ) cycle,” Sol. Energy, vol. 86, no. 1, pp. 190–199, 2012, doi:10.1016/j.solener.2011.09.020.
  • G. Polonsky and A. Kribus, “Performance of the solar hybrid STIG cycle with latent heat storage,” Appl. Energy, vol. 155, pp. 791–803, 2015, doi:10.1016/j.apenergy.2015.06.067.
  • F. Moreno-gamboa, A. Escudero-atehortua, and C. Nieto-londoño, “Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods,” Therm. Sci. Eng. Prog., vol. 20, no. August, 2020, doi:10.1016/j.tsep.2020.100679.
  • K. Mohammadi, K. Ellingwood, and K. Powell, “Novel hybrid solar tower-gas turbine combined power cycles using supercritical carbon dioxide bottoming cycles,” Appl. Therm. Eng., p. 1-48, 2020, doi:10.1016/j.applthermaleng.2020.115588.
  • P. Schwarzbo, R. Buck, C. Sugarmen, A. Ring, P. Altwegg, and J. Enrile, “Solar gas turbine systems : Design , cost and perspectives,” vol. 80, pp. 1231–1240, 2006, doi:10.1016/j.solener.2005.09.007.
  • B. Ssebabi, F. Dinter, J. Van Der Spuy, and M. Schatz, “Predicting the performance of a micro gas turbine under solar-hybrid operation,” Energy, vol. 177, pp. 121–135, 2019, doi:10.1016/j.energy.2019.04.064
  • U. Desideri, F. Zepparelli, V. Morettini, and E. Garroni, “Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations,” Appl. Energy, vol. 102, pp. 765–784, 2013, doi.org/10.1016/j.apenergy.2012.08.033
  • I. Ehtiwesh, “Exergetic , energetic , economic and environmental evaluation of concentrated solar power plants in Libya,” PhD thesis, University of Aveiro, 2016, doi:http://ria.ua.pt/handle/10773/15882.
  • “GECOL to resume work at Ubari power plant project | The Libya Observer.” [Online]. Available: https://www.libyaobserver.ly/inbrief/gecol-resume-work-ubari-power-plant-project.
  • M. Genossenschaft, “Meteonorm7 Software,” METEOTEST Genossenschaft, https://meteonorm.com
  • National Renewable Energy Laboratory (NREL), “System Advisor Model ( SAM 2022.12.2 r3 (SSC 280)).” https://sam.nrel.gov/download.
  • J. Spelling, “Hybrid Solar Gas-Turbine Power Plants, A Thermoeconomic Analysis,” KTH Royal Institute of Technology - School of Industrial Engineering and Management, Doctoral Thesis, 2013.
  • I. Dincer, “Renewable energy and sustainable development: a crucial review,” Renew. Sustain. Energy Rev., vol. 4, no. 2, pp. 157–175, 2000.
  • A. Al-Ghandoor, I. Al-Hinti, B. Akash, and E. Abu-Nada, “Analysis of energy and exergy use in the Jordanian urban residential sector,” Int. J. Exergy, vol. 5, no. 4, pp. 413–428, 2008, doi:10.1504/IJEX.2008.019113.
  • A. Baghernejad and A. Anvari‐moghaddam, “Exergoeconomic and environmental analysis and multi‐objective optimization of a new regenerative gas turbine combined cycle,” Appl. Sci., vol. 11, no. 23, 2021, doi:10.3390/app112311554.
  • M. Moran, H. Shapiro, D. Boettener, and M. Bailey, Fundamentals o f engineering thermodynamics, Seven Edit. John Wiley & Sons, Inc., 2011.
  • C. Borgnakke and R. Sonntag, Fundamentals of Thermodynamics, Seventh. John Wiley & Sons, Inc., 2009. M. Montes, A. Abánades, J. Martínez-Val, and M. Valdés, “Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors,” Sol. Energy, vol. 83, no. 12, pp. 2165–2176, Dec. 2009, doi.org/10.1016/j.solener.2009.08.010
Year 2023, Volume: 26 Issue: 4, 1 - 10, 01.12.2023
https://doi.org/10.5541/ijot.1293271

Abstract

References

  • I. A. S. Ehtiwesh, F. Neto Da Silva, and A. C. M. Sousa, “Deployment of parabolic trough concentrated solar power plants in North Africa – a case study for Libya,” Int. J. Green Energy, Oct. 2018, doi:10.1080/15435075.2018.1533474.
  • I. A. S. Ehtiwesh, M. C. Coelho, and A. C. M. Sousa, “Exergetic and environmental life cycle assessment analysis of concentrated solar power plants,” Renew. Sustain. Energy Rev., vol. 56, pp. 145–155, 2016, doi:10.1016/j.rser.2015.11.066.
  • M. Muñoz and J. Muñoz-ant, “Comparison of Different Technologies for Integrated Solar Combined Cycles : Analysis of Concentrating Technology and Solar Integration,” MDPI, Energies, 2018, doi:10.3390/en11051064.
  • H. Derbal, S. Bouaichaoui, N. El-Gharbi, M. Belhamel, and A. Benzaoui, “Modeling and numerical simulation of an integrated solar combined cycle system in Algeria,” Procedia Eng., vol. 33, pp. 199–208, Jan. 2012, doi.org/10.1016/j.proeng.2012.01.1194.
  • A. Al Hariri, S. Selimli, and H. Dumrul, “Effectiveness of heat sink fin position on photovoltaic thermal collector cooling supported by paraffin and steel foam: An experimental study,” Appl. Therm. Eng., vol. 213, no. June, p. 118784, 2022, doi:10.1016/j.applthermaleng.2022.118784.
  • A. Abdel Dayem, M. Metwally, A. Alghamdi, and E. Marzouk, “Numerical simulation and experimental validation of integrated solar combined power plant,” Energy Procedia, vol. 50, pp. 290–305, 2014, doi.org/10.1016/j.egypro.2014.06.036.
  • A. Poullikkas, “Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region - A case study for the island of Cyprus,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2474–2484, Dec. 2009, doi.org/10.1016/j.rser.2009.03.014.
  • M. Mashena and N. Alkishriwi, “Concentrated Solar Power Potential in Libya,” JASE, vol. 11, no. 1, pp. 56–72, 2017.
  • B. Belgasim, Y. Aldali, M. J. R. Abdunnabi, G. Hashem, and K. Hossin, “The potential of concentrating solar power (CSP) for electricity generation in Libya,” Renew. Sustain. Energy Rev., vol. 90, no. March, pp. 1–15, 2018, doi:10.1016/j.rser.2018.03.045.
  • T. E. Boukelia, M. S. Mecibah, B. N. Kumar, and K. S. Reddy, “Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions,” Energy Convers. Manag., vol. 101, pp. 450–459, 2015, doi:10.1016/j.enconman.2015.05.067.
  • I. Ehtiwesh, F. Neto da Silva, and A. Sousa, “Performance and economic analysis of concentrated solar power plants in Libya,” in 2nd International Conference on Energy and Environment: bringing together Engineering and Economics, 2015, pp. 459–66.
  • M. Balghouthi, S. E. Trabelsi, M. Ben Amara, A. B. H. Ali, and A. Guizani, “Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe,” Renew. Sustain. Energy Rev., vol. 56, pp. 1227–1248, 2016, doi:10.1016/j.rser.2015.12.052.
  • O. M. J. Jasim, S. Selimli, H. Dumrul, and S. Yilmaz, “Closed-loop aluminium oxide nanofluid cooled photovoltaic thermal collector energy and exergy analysis, an experimental study,” J. Energy Storage, vol. 50, no. April, pp. 1–9, 2022, doi:10.1016/j.est.2022.104654
  • B. A. A. Yousef et al., “Perspective on integration of concentrated solar power plants,” no. April, pp. 1098–1125, 2021.
  • K. Kitzmiller, “Effect of Variable Guide Vanes and Natural Gas Hybridization for Accommodating Fluctuations in Solar Input to a Gas Turbine,” vol. 134, no. November 2012, pp. 1–12, 2016, doi:10.1115/1.4006894.
  • M. Livshits and A. Kribus, “Solar hybrid steam injection gas turbine ( STIG ) cycle,” Sol. Energy, vol. 86, no. 1, pp. 190–199, 2012, doi:10.1016/j.solener.2011.09.020.
  • G. Polonsky and A. Kribus, “Performance of the solar hybrid STIG cycle with latent heat storage,” Appl. Energy, vol. 155, pp. 791–803, 2015, doi:10.1016/j.apenergy.2015.06.067.
  • F. Moreno-gamboa, A. Escudero-atehortua, and C. Nieto-londoño, “Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods,” Therm. Sci. Eng. Prog., vol. 20, no. August, 2020, doi:10.1016/j.tsep.2020.100679.
  • K. Mohammadi, K. Ellingwood, and K. Powell, “Novel hybrid solar tower-gas turbine combined power cycles using supercritical carbon dioxide bottoming cycles,” Appl. Therm. Eng., p. 1-48, 2020, doi:10.1016/j.applthermaleng.2020.115588.
  • P. Schwarzbo, R. Buck, C. Sugarmen, A. Ring, P. Altwegg, and J. Enrile, “Solar gas turbine systems : Design , cost and perspectives,” vol. 80, pp. 1231–1240, 2006, doi:10.1016/j.solener.2005.09.007.
  • B. Ssebabi, F. Dinter, J. Van Der Spuy, and M. Schatz, “Predicting the performance of a micro gas turbine under solar-hybrid operation,” Energy, vol. 177, pp. 121–135, 2019, doi:10.1016/j.energy.2019.04.064
  • U. Desideri, F. Zepparelli, V. Morettini, and E. Garroni, “Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations,” Appl. Energy, vol. 102, pp. 765–784, 2013, doi.org/10.1016/j.apenergy.2012.08.033
  • I. Ehtiwesh, “Exergetic , energetic , economic and environmental evaluation of concentrated solar power plants in Libya,” PhD thesis, University of Aveiro, 2016, doi:http://ria.ua.pt/handle/10773/15882.
  • “GECOL to resume work at Ubari power plant project | The Libya Observer.” [Online]. Available: https://www.libyaobserver.ly/inbrief/gecol-resume-work-ubari-power-plant-project.
  • M. Genossenschaft, “Meteonorm7 Software,” METEOTEST Genossenschaft, https://meteonorm.com
  • National Renewable Energy Laboratory (NREL), “System Advisor Model ( SAM 2022.12.2 r3 (SSC 280)).” https://sam.nrel.gov/download.
  • J. Spelling, “Hybrid Solar Gas-Turbine Power Plants, A Thermoeconomic Analysis,” KTH Royal Institute of Technology - School of Industrial Engineering and Management, Doctoral Thesis, 2013.
  • I. Dincer, “Renewable energy and sustainable development: a crucial review,” Renew. Sustain. Energy Rev., vol. 4, no. 2, pp. 157–175, 2000.
  • A. Al-Ghandoor, I. Al-Hinti, B. Akash, and E. Abu-Nada, “Analysis of energy and exergy use in the Jordanian urban residential sector,” Int. J. Exergy, vol. 5, no. 4, pp. 413–428, 2008, doi:10.1504/IJEX.2008.019113.
  • A. Baghernejad and A. Anvari‐moghaddam, “Exergoeconomic and environmental analysis and multi‐objective optimization of a new regenerative gas turbine combined cycle,” Appl. Sci., vol. 11, no. 23, 2021, doi:10.3390/app112311554.
  • M. Moran, H. Shapiro, D. Boettener, and M. Bailey, Fundamentals o f engineering thermodynamics, Seven Edit. John Wiley & Sons, Inc., 2011.
  • C. Borgnakke and R. Sonntag, Fundamentals of Thermodynamics, Seventh. John Wiley & Sons, Inc., 2009. M. Montes, A. Abánades, J. Martínez-Val, and M. Valdés, “Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors,” Sol. Energy, vol. 83, no. 12, pp. 2165–2176, Dec. 2009, doi.org/10.1016/j.solener.2009.08.010
There are 32 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Sami Ehtiwesh 0009-0000-5531-454X

Asya Gabbasa This is me 0000-0002-6978-2325

Ismael Ehtiwesh 0000-0002-4128-6290

Early Pub Date September 2, 2023
Publication Date December 1, 2023
Published in Issue Year 2023 Volume: 26 Issue: 4

Cite

APA Ehtiwesh, S., Gabbasa, A., & Ehtiwesh, I. (2023). The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya. International Journal of Thermodynamics, 26(4), 1-10. https://doi.org/10.5541/ijot.1293271
AMA Ehtiwesh S, Gabbasa A, Ehtiwesh I. The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya. International Journal of Thermodynamics. December 2023;26(4):1-10. doi:10.5541/ijot.1293271
Chicago Ehtiwesh, Sami, Asya Gabbasa, and Ismael Ehtiwesh. “The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya”. International Journal of Thermodynamics 26, no. 4 (December 2023): 1-10. https://doi.org/10.5541/ijot.1293271.
EndNote Ehtiwesh S, Gabbasa A, Ehtiwesh I (December 1, 2023) The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya. International Journal of Thermodynamics 26 4 1–10.
IEEE S. Ehtiwesh, A. Gabbasa, and I. Ehtiwesh, “The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya”, International Journal of Thermodynamics, vol. 26, no. 4, pp. 1–10, 2023, doi: 10.5541/ijot.1293271.
ISNAD Ehtiwesh, Sami et al. “The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya”. International Journal of Thermodynamics 26/4 (December 2023), 1-10. https://doi.org/10.5541/ijot.1293271.
JAMA Ehtiwesh S, Gabbasa A, Ehtiwesh I. The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya. International Journal of Thermodynamics. 2023;26:1–10.
MLA Ehtiwesh, Sami et al. “The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya”. International Journal of Thermodynamics, vol. 26, no. 4, 2023, pp. 1-10, doi:10.5541/ijot.1293271.
Vancouver Ehtiwesh S, Gabbasa A, Ehtiwesh I. The Potential of Using the Incorporation of Concentrated Solar Power and Gas Turbines in the South of Libya. International Journal of Thermodynamics. 2023;26(4):1-10.