Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 1 Sayı: 1, 68 - 76, 19.08.2019
https://doi.org/10.38058/ijsl.592537

Öz

Kaynakça

  • Arumuganathan, K., Earle, E. 1991. Nuclear DNA content of some important plant species, Plant Molecular Biology Reporter, 9: 208.
  • Carvalho, N., Canela, F.M., Leite, P.H.S., Ferreira, M.A., Oliveira, V.R., et al. 2017. Analysis of genetic variability of commercial melon cultivars using SSR molecular markers, Genetics and Molecular Research, 16(3): gmr16039739.
  • Galpaz, N., Gonda, I., Shem‐Tov, D., Barad, O., Tzuri, G., et al. 2018. Deciphering genetic factors that determine melon fruit‐quality traits using RNA‐Seq‐based high‐resolution QTL and eQTL mapping, The Plant Journal, 94(1): 169-191.
  • Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G. et al. 2012. The genome of melon (Cucumis melo L.), Proceedings of the National Academy of Sciences, 109(29): 11872-11877.
  • Gómez-Aix, C., Pascual, L., Cañizares, J., Sánchez-Pina, M.A., Aranda, M.A. 2016. Transcriptomic profiling of melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations, BMC Genomics, 17(1): 429.
  • Guo, S., Zhang, J., Sun, H., Salse, J., Lucas, W.J., et al. 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions, Nature Genetics, 45(1): 51.
  • Huala, E., Dickerman, A.W., Garcia-Hernandez, M., Weems, D., Reiser, L. et al. 2001. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant, Nucleic Acids Research, 29: 102-105.
  • Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., et al. 2009. The genome of the cucumber, Cucumis sativus L, Nature Genetics, 41: 1275-1281.
  • Huang, H.X., Yu, T., Li, J. X., Qu, S.P., Wang, M.M., et al. 2019. Characterization of Cucurbita maxima fruit metabolomic profiling and transcriptome to reveal fruit quality and ripening gene expression patterns, Journal of Plant Biology, 62(3): 203-216.
  • Jat, G.S., Munshi, A.D., Behera, T.K., Choudhary, H., Dash, P., et al. 2019. Genetics and molecular mapping of gynoecious (F) locus in cucumber (Cucumis sativus L.), The Journal of Horticultural Science and Biotechnology, 94(1): 24-32.
  • Jeffrey, C. 1980. A review of the Cucurbitaceae. Botanical Journal of the Linnean Society, 81(3): 233-247.
  • Jeffrey, C. 2001. Cucurbitaceae. In: Hanelt, P. (Ed). Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops. Springer. pp. 1510–1557.
  • Jiang, H., Tian, H., Yan, C., Jia, L., Wang, Y., et al. 2019. RNA-seq analysis of watermelon (Citrullus lanatus) to identify genes involved in fruit cracking, Scientia Horticulturae, 248: 248-255.
  • Kalendar, R., Amenov, A., Daniyarov, A. 2019. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants, Functional Plant Biology, 46(1): 15-29.
  • Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C. et al. 2011. Analysis of plant diversity with retrotransposon-based molecular markers, Heredity, 106(4): 520.
  • Karimi, H.R., Bagheriyan, S., Esmaelizadeh, M., & Estaji, A., 2016, Genetic relationships among melons using RAPD markers, International Journal of Vegetable Science, 22(2): 200-208.
  • Kazazian, H.H. 2004. Mobile elements: drivers of genome evolution, Science, 303(5664): 1626-1632.
  • Kidwell, K.K., Osborn, T.C. 1992. Simple plant DNA Isolation Procedures, In: Beckmann, J.S., Osborn, T.C. (Eds.) Plant Genomes: Methods for Genetic and Physical Mapping. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 1-13.
  • Kyriacou, M.C., Leskovar, D.I., Colla, G., Rouphael, Y. 2018. Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Scientia Horticulturae, 234: 393-408.
  • Lanciano, S., Mirouze, M. 2018. Transposable elements: all mobile, all different, some stress responsive, some adaptive?, Current Opinion in Genetics & Development, 49: 106-114.
  • Leigh, F., Kalendar, R., Lea, V., Lee, D., Donini, P., et al. 2003. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques, Molecular Genetics and Genomics, 269(4): 464-474.
  • Liu, L., Sun, T., Liu, X., Guo, Y., Huang, X., et al. 2019. Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.), Euphytica, 215(2): 20.
  • Marakli, S., Calis, A., Gozukirmizi, N. 2019. Determination of barley-specific retrotransposons’ movements in Pinus nigra ssp. pallasiana varieties: pyramidata and Seneriana, Russian Journal of Genetics, 55(1): 71-78.
  • Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., et al. 2009. A transposon-induced epigenetic change leads to sex determination in melon, Nature, 461: 1135-1138.
  • Meyer, R.S., Purugganan, M.D. 2013. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, 14(12): 840.
  • Morgante, M., De Paoli, E., Radovic, S. 2007. Transposable elements and the plant pan-genomes, Current Opinion in Plant Biology, 10: 149-155.
  • Pandey, A., Khan, M.K., Isik, R., Turkmen, O., Acar, R., et al. 2019. Genetic diversity and population structure of watermelon (Citrullus sp.) genotypes, 3 Biotech, 9(6): 210.
  • Pawełkowicz, M.E., Skarzyńska, A., Pląder, W., Przybecki, Z., 2019, Genetic and molecular bases of cucumber (Cucumis sativus L.) sex determination, Molecular Breeding, 39(3): 50.
  • Renner, S.S., Schaefer, H., Kocyan, A. 2007. Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo), BMC Evolutionary Biology, 7: 58.
  • Sebastian, P., Schaefer, H., Telford, I.R., Renner, S.S. 2010. Phylogenetic relationships among domesticated and wild species of Cucumis (Cucurbitaceae): The sister species of melon is from Australia, Proceedings of the National Academy of Sciences of the United States of America, 107: 14269-14273.
  • Sun, Y., Fan, M., He, Y. 2019. Transcriptome analysis of watermelon leaves reveals candidate genes responsive to Cucumber green mottle mosaic virus infection, International Journal of Molecular Sciences, 20(3): 610.
  • TÜİK, 2018, http://www.tuik.gov.tr (July, 2018).
  • Yilmaz, S., Marakli, S., Yuzbasioglu, G., Gozukirmizi, N. 2018. Short-term mutagenicity test by using IRAP molecular marker in rice grown under herbicide treatment, Biotechnology and Biotechnological Equipment, 32(4): 923-928.
  • Zaitoun, S.Y.A., Jamous, R.M., Shtaya, M.J., Mallah, O.B., Eid, I.S., et al. 2018. Characterizing Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers, BMC Plant Biology, 18(1): 246.
  • Zhang, Y., Yang, T., Li, M., Xu, Y., Lin, F. et al., 2018. Analysis and evaluation of fructose content in watermelon germplasm resources, Southwest China Journal of Agricultural Sciences, 31(4): 786-795.
  • Zhang, W.W., Pan, J.S., He, H.L., Zhang, C., Li, Z., et al. 2012. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.), Theoretical and Applied Genetics, 124(2): 249-259.
  • Zhang, W., He, H., Guan, Y., Du, H., Yuan, L., et al. 2010. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.), Theoretical and Applied Genetics, 120(3): 645-654.
  • Zhu, W.Y., Huang, L., Chen, L., Yang, J.T., Wu, J.N., et al. 2016. A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science, 7: 437.

Retrotransposon Analyses in Cucurbitaceae family

Yıl 2019, Cilt: 1 Sayı: 1, 68 - 76, 19.08.2019
https://doi.org/10.38058/ijsl.592537

Öz

Retrotransposons
are class I mobile elements, moving via an RNA intermediate. There are many
retrotransposon-based molecular markers. Here, Nikita and Sukkula
retrotransposons were investigated in
Cucumis sativus L.,
Citrullus lanatus and Cucumis melo L. by using IRAP (Inter-Retrotransposon
Amplified Polymorphism) molecular marker method. These barley-specific retrotransposons
were identified in three plant species for the first time. Moreover, band
profiles of the retrotransposons were similar in plants, indicating h
omomorphic band profiles. Findings could provide
valuable information for understanding genomes of these plants and evolutionary
relationships among them.

Kaynakça

  • Arumuganathan, K., Earle, E. 1991. Nuclear DNA content of some important plant species, Plant Molecular Biology Reporter, 9: 208.
  • Carvalho, N., Canela, F.M., Leite, P.H.S., Ferreira, M.A., Oliveira, V.R., et al. 2017. Analysis of genetic variability of commercial melon cultivars using SSR molecular markers, Genetics and Molecular Research, 16(3): gmr16039739.
  • Galpaz, N., Gonda, I., Shem‐Tov, D., Barad, O., Tzuri, G., et al. 2018. Deciphering genetic factors that determine melon fruit‐quality traits using RNA‐Seq‐based high‐resolution QTL and eQTL mapping, The Plant Journal, 94(1): 169-191.
  • Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G. et al. 2012. The genome of melon (Cucumis melo L.), Proceedings of the National Academy of Sciences, 109(29): 11872-11877.
  • Gómez-Aix, C., Pascual, L., Cañizares, J., Sánchez-Pina, M.A., Aranda, M.A. 2016. Transcriptomic profiling of melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations, BMC Genomics, 17(1): 429.
  • Guo, S., Zhang, J., Sun, H., Salse, J., Lucas, W.J., et al. 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions, Nature Genetics, 45(1): 51.
  • Huala, E., Dickerman, A.W., Garcia-Hernandez, M., Weems, D., Reiser, L. et al. 2001. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant, Nucleic Acids Research, 29: 102-105.
  • Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., et al. 2009. The genome of the cucumber, Cucumis sativus L, Nature Genetics, 41: 1275-1281.
  • Huang, H.X., Yu, T., Li, J. X., Qu, S.P., Wang, M.M., et al. 2019. Characterization of Cucurbita maxima fruit metabolomic profiling and transcriptome to reveal fruit quality and ripening gene expression patterns, Journal of Plant Biology, 62(3): 203-216.
  • Jat, G.S., Munshi, A.D., Behera, T.K., Choudhary, H., Dash, P., et al. 2019. Genetics and molecular mapping of gynoecious (F) locus in cucumber (Cucumis sativus L.), The Journal of Horticultural Science and Biotechnology, 94(1): 24-32.
  • Jeffrey, C. 1980. A review of the Cucurbitaceae. Botanical Journal of the Linnean Society, 81(3): 233-247.
  • Jeffrey, C. 2001. Cucurbitaceae. In: Hanelt, P. (Ed). Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops. Springer. pp. 1510–1557.
  • Jiang, H., Tian, H., Yan, C., Jia, L., Wang, Y., et al. 2019. RNA-seq analysis of watermelon (Citrullus lanatus) to identify genes involved in fruit cracking, Scientia Horticulturae, 248: 248-255.
  • Kalendar, R., Amenov, A., Daniyarov, A. 2019. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants, Functional Plant Biology, 46(1): 15-29.
  • Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C. et al. 2011. Analysis of plant diversity with retrotransposon-based molecular markers, Heredity, 106(4): 520.
  • Karimi, H.R., Bagheriyan, S., Esmaelizadeh, M., & Estaji, A., 2016, Genetic relationships among melons using RAPD markers, International Journal of Vegetable Science, 22(2): 200-208.
  • Kazazian, H.H. 2004. Mobile elements: drivers of genome evolution, Science, 303(5664): 1626-1632.
  • Kidwell, K.K., Osborn, T.C. 1992. Simple plant DNA Isolation Procedures, In: Beckmann, J.S., Osborn, T.C. (Eds.) Plant Genomes: Methods for Genetic and Physical Mapping. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 1-13.
  • Kyriacou, M.C., Leskovar, D.I., Colla, G., Rouphael, Y. 2018. Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Scientia Horticulturae, 234: 393-408.
  • Lanciano, S., Mirouze, M. 2018. Transposable elements: all mobile, all different, some stress responsive, some adaptive?, Current Opinion in Genetics & Development, 49: 106-114.
  • Leigh, F., Kalendar, R., Lea, V., Lee, D., Donini, P., et al. 2003. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques, Molecular Genetics and Genomics, 269(4): 464-474.
  • Liu, L., Sun, T., Liu, X., Guo, Y., Huang, X., et al. 2019. Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.), Euphytica, 215(2): 20.
  • Marakli, S., Calis, A., Gozukirmizi, N. 2019. Determination of barley-specific retrotransposons’ movements in Pinus nigra ssp. pallasiana varieties: pyramidata and Seneriana, Russian Journal of Genetics, 55(1): 71-78.
  • Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., et al. 2009. A transposon-induced epigenetic change leads to sex determination in melon, Nature, 461: 1135-1138.
  • Meyer, R.S., Purugganan, M.D. 2013. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, 14(12): 840.
  • Morgante, M., De Paoli, E., Radovic, S. 2007. Transposable elements and the plant pan-genomes, Current Opinion in Plant Biology, 10: 149-155.
  • Pandey, A., Khan, M.K., Isik, R., Turkmen, O., Acar, R., et al. 2019. Genetic diversity and population structure of watermelon (Citrullus sp.) genotypes, 3 Biotech, 9(6): 210.
  • Pawełkowicz, M.E., Skarzyńska, A., Pląder, W., Przybecki, Z., 2019, Genetic and molecular bases of cucumber (Cucumis sativus L.) sex determination, Molecular Breeding, 39(3): 50.
  • Renner, S.S., Schaefer, H., Kocyan, A. 2007. Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo), BMC Evolutionary Biology, 7: 58.
  • Sebastian, P., Schaefer, H., Telford, I.R., Renner, S.S. 2010. Phylogenetic relationships among domesticated and wild species of Cucumis (Cucurbitaceae): The sister species of melon is from Australia, Proceedings of the National Academy of Sciences of the United States of America, 107: 14269-14273.
  • Sun, Y., Fan, M., He, Y. 2019. Transcriptome analysis of watermelon leaves reveals candidate genes responsive to Cucumber green mottle mosaic virus infection, International Journal of Molecular Sciences, 20(3): 610.
  • TÜİK, 2018, http://www.tuik.gov.tr (July, 2018).
  • Yilmaz, S., Marakli, S., Yuzbasioglu, G., Gozukirmizi, N. 2018. Short-term mutagenicity test by using IRAP molecular marker in rice grown under herbicide treatment, Biotechnology and Biotechnological Equipment, 32(4): 923-928.
  • Zaitoun, S.Y.A., Jamous, R.M., Shtaya, M.J., Mallah, O.B., Eid, I.S., et al. 2018. Characterizing Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers, BMC Plant Biology, 18(1): 246.
  • Zhang, Y., Yang, T., Li, M., Xu, Y., Lin, F. et al., 2018. Analysis and evaluation of fructose content in watermelon germplasm resources, Southwest China Journal of Agricultural Sciences, 31(4): 786-795.
  • Zhang, W.W., Pan, J.S., He, H.L., Zhang, C., Li, Z., et al. 2012. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.), Theoretical and Applied Genetics, 124(2): 249-259.
  • Zhang, W., He, H., Guan, Y., Du, H., Yuan, L., et al. 2010. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.), Theoretical and Applied Genetics, 120(3): 645-654.
  • Zhu, W.Y., Huang, L., Chen, L., Yang, J.T., Wu, J.N., et al. 2016. A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science, 7: 437.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Sevgi Marakli 0000-0001-5796-7819

Yayımlanma Tarihi 19 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Marakli, S. (2019). Retrotransposon Analyses in Cucurbitaceae family. International Journal of Science Letters, 1(1), 68-76. https://doi.org/10.38058/ijsl.592537
AMA Marakli S. Retrotransposon Analyses in Cucurbitaceae family. IJSL. Ağustos 2019;1(1):68-76. doi:10.38058/ijsl.592537
Chicago Marakli, Sevgi. “Retrotransposon Analyses in Cucurbitaceae Family”. International Journal of Science Letters 1, sy. 1 (Ağustos 2019): 68-76. https://doi.org/10.38058/ijsl.592537.
EndNote Marakli S (01 Ağustos 2019) Retrotransposon Analyses in Cucurbitaceae family. International Journal of Science Letters 1 1 68–76.
IEEE S. Marakli, “Retrotransposon Analyses in Cucurbitaceae family”, IJSL, c. 1, sy. 1, ss. 68–76, 2019, doi: 10.38058/ijsl.592537.
ISNAD Marakli, Sevgi. “Retrotransposon Analyses in Cucurbitaceae Family”. International Journal of Science Letters 1/1 (Ağustos 2019), 68-76. https://doi.org/10.38058/ijsl.592537.
JAMA Marakli S. Retrotransposon Analyses in Cucurbitaceae family. IJSL. 2019;1:68–76.
MLA Marakli, Sevgi. “Retrotransposon Analyses in Cucurbitaceae Family”. International Journal of Science Letters, c. 1, sy. 1, 2019, ss. 68-76, doi:10.38058/ijsl.592537.
Vancouver Marakli S. Retrotransposon Analyses in Cucurbitaceae family. IJSL. 2019;1(1):68-76.