Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 4, 772 - 780, 05.12.2025
https://doi.org/10.21448/ijsm.1554137

Abstract

References

  • Brewer, M.S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10, 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
  • Bryant, D.A. (1979). Phycoerythrin and phycocyanin properties and occurrence in cyanobacteria. Journal of General Microbiology, 128, 835 844. https://doi.org/10.1099/00221287-128-4-835
  • Carreira-Casais, A., Paniwnyk, L., & Campbell, R. (2021). Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. International Journal of Environmental Research and Public Health, 18(17), 9153. https://doi.org/10.3390/ijerph18179153
  • Chemat, F., Rombaut, N., Meullemiestre, A., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540 560. https://doi.org/10.1016/j.ultsonch.2016.06.035
  • Chopra, K., & Bishnoi, B. (2007). Antioxidant profile of Spirulina: A blue-green microalga. In M.E. Gershwin & E. Belay (Eds.), Spirulina in human nutrition and health (pp. 101-116). CRC Press. https://doi.org/10.1201/9781420052572.ch5
  • Ekici, L., Simsek, Z., Ozturk, I., Sagdic, O., & Yetim, H. (2014). Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Analytical Methods, 7, 1328-1336. https://doi.org/10.1007/s12161-013-9753-y
  • Elbatreek, M.H., Mahdi, I., Ouchari, W., Mahmoud, M.F., & Sobeh, M. (2023). Current advances on the therapeutic potential of pinocembrin: an updated review. Biomedicine & Pharmacotherapy, 157, 114032. https://doi.org/10.1016/j.biopha.2022.114032
  • Gabr, G.A., El-Sayed, S.M., & Hikal, M.S. (2020). Antioxidant activities of phycocyanin: A bioactive compound from Spirulina platensis. Journal of Pharmaceutical Research International, 32(2), 73-85. https://doi.org/10.9734/jpri/2020/v32i230407
  • Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486. https://doi.org/10.1007/s10811-012-9804-6
  • Goswami, M.J., Dutta, U., & Kakati, D. (2024). Ultrasound-Assisted Extraction for Food, Pharmacy, and Biotech Industries. In Bioactive Extraction and Application in Food and Nutraceutical Industries (pp. 103-128). Springer. https://doi.org/10.1007/978-1-0716-3601-5_5
  • Gouda, M.K.G., Kavitha, M.D., & Sarada, R. (2015). Antihyperglycemic, antioxidant and antimicrobial activities of the butanol extract from Spirulina platensis. Journal of Food Biochemistry, 39, 594-602. https://doi.org/10.1111/jfbc.12164
  • Guldas, M., Kucuk, M., & Yilmaz, Y. (2020). Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Food Science and Technology, 41 (3), 615-625. https://doi.org/10.1590/fst.23920
  • Hajimahmoodi, M., Faramarzi, M.A., Mohammadi, N., Soltani, N., Oveisi, M.R., & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. Journal of Applied Phycology, 22, 43 50. https://doi.org/10.1007/s10811-009-9424-y
  • Haminiuk, C.W., Maciel, G.M., & Gularte, M.A. (2012). Phenolic compounds in fruits–an overview. International Journal of Food Science & Technology, 47(10), 2023-2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x
  • Han, D.-G., Jeong, H.-J., & Lim, H.-Y. (2021). Investigation of the factors responsible for the poor oral bioavailability of acacetin in rats: physicochemical and biopharmaceutical aspects. Pharmaceutics, 13(2), 175. https://doi.org/10.3390/pharmaceutics13020175
  • Honda, S., Abe, K., & Yamada, Y. (2019). Stability of polyphenols under alkaline conditions and the formation of a xanthine oxidase inhibitor from gallic acid in a solution at pH 7.4. Food Science and Technology Research, 25(1), 123-129. https://doi.org/10.3136/fstr.25.123
  • Li, Y., Huang, W., & Zhang, Z. (2020). Extraction of phycocyanin—A natural blue colorant from dried Spirulina biomass: Influence of processing parameters and extraction techniques. Journal of Food Science, 85(3), 727-735. https://doi.org/10.1111/1750-3841.14842
  • Miranda, M.S., Cintra, R.G., Barros, S.B.M., & Mancini-Filho, J. (1998). Antioxidant activity of microalgae Spirulina maxima. Brazilian Journal of Medicinal and Biological Research, 31, 1075-1079. https://doi.org/10.1590/S0100-879X1998000800007
  • Nuhu, A.A. (2013). Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. Journal of Marine Biology, 1-8. https://doi.org/10.1155/2013/325636
  • Ozawa, H., Miyazawa, T., & Miyazawa, T. (2021). Effects of dietary food components on cognitive functions in older adults. Nutrients, 13(8), 2804. https://doi.org/10.3390/nu13082804
  • Santos, T.D., Bastos de Freitas, B.C., Moreira, J.B., Zanfonato, K., & Costa, J.A.V. (2016). Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innovative Food Science and Emerging Technologies, 37, 216-220. https://doi.org/10.1016/j.ifset.2016.07.016
  • Shalaby, E.A., & Shanab, S.M.M. (2013). Antiradical and antioxidant activities of different Spirulina platensis extracts against DPPH and ABTS radical assays. Journal of Marine Biology & Oceanography, 2(1), 1-8. https://doi.org/10.4172/2324-8661.1000105
  • Shalaby, E.A., Shanab, S.M.M., & Singh, V. (2010). Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. Journal of Medicinal Plants Research, 4, 2655-2632. https://doi.org/10.5897/JMPR09.300
  • Shen, X., Wang, T., & Zhao, J. (2022). Preparation, in vitro and in vivo evaluation of pinocembrin-loaded TPGS modified liposomes with enhanced bioavailability and antihyperglycemic activity. Drug Development and Industrial Pharmacy, 48(11), 623-634. https://doi.org/10.1080/03639045.2022.2151616
  • Singh, S., Khan, H., & Shukla, M. (2020). Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food and Chemical Toxicology, 145, 111708. https://doi.org/10.1016/j.fct.2020.111708
  • Soong, Y.-Y., & Barlow, P.J. (2004). Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88(3), 411-417. https://doi.org/10.1016/j.foodchem.2004.02.003
  • Usharani, G., Srinivasan, G., Sivasakthi, S., & Saranraj, P. (2015). Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Advances in Biological Research, 9(5), 292-298. https://doi.org/10.5829/idosi.abr.2015.9.5.9610
  • Vali Aftari, R., Mahdavi, S., & Jafari, S. (2015). The optimized concentration and purity of Spirulina platensis C-phycocyanin: A comparative study on microwave-assisted and ultrasound-assisted extraction methods. Journal of Food Processing and Preservation, 39(6), 3080-3091. https://doi.org/10.1111/jfpp.12573
  • Wang, F., Yu, X., Cui, Y., Xu, L., Huo, S., Ding, Z., Hu, Q., Xie, W., Xiao, H., Zhang, D. (2023). Efficient extraction of phycobiliproteins from dry biomass of Spirulina platensis using sodium chloride as extraction enhancer. Food Chemistry, 406, 135005. https://doi.org/10.1016/j.foodchem.2022.135005
  • Wang, Y., Wang, H., Wu, J., Ma, M., Wang, W., Li, Y., Chen, J.J., & Wang, X. (2014). Determination of phenolics in water and Arthrospira (Spirulina) platensis by concentrated sulfuric acid and ultrasound-assisted surfactant-enhanced emulsification microextraction and high-performance liquid chromatography. Analytical Letters, 47(7), 1242-1260. https://doi.org/10.1080/00032719.2013.865208

Ultrasound-assisted extraction of phenolics from Spirulina platensis by different solvents: An optimization study based on simplex lattice mixture design

Year 2025, Volume: 12 Issue: 4, 772 - 780, 05.12.2025
https://doi.org/10.21448/ijsm.1554137

Abstract

Spirulina has attracted attention in recent years because it is an important source of bioactive compounds such as phenolics. In this study, different solvents (acetone, ethanol, and distilled water) were evaluated in terms of their phenolic extraction performance from Spirulina platensis which is a popular functional nutraceutical. This was accomplished by performing optimization research and using the simplex lattice mixture design approach to identify the optimal solvent type or solvent mixture that may provide the highest phenolic yield. Fifteen extracts were prepared, and their total phenolic content was determined. After the data had been modeled, it was concluded that the solvent with the highest phenolic recovery performance was distilled water. Alone the water could extract more phenolics than acetone and ethanol or their mixtures at different ratios. Total phenolic contents of acetone, ethanol, and distilled water extracts were 9.26, 11.82, and 36.51 mg GAE/g samples showing that the water was the best. Having established water as the optimal solvent for S. platensis extraction, we investigated the influence of various pH conditions (3, 5, 7, and 9) on both conventional hot water extraction and ultrasound-assisted extraction methods. Results showed that higher pH values significantly increased total phenolic content, and ultrasound extraction yielded better results than traditional hot water extraction.

References

  • Brewer, M.S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10, 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
  • Bryant, D.A. (1979). Phycoerythrin and phycocyanin properties and occurrence in cyanobacteria. Journal of General Microbiology, 128, 835 844. https://doi.org/10.1099/00221287-128-4-835
  • Carreira-Casais, A., Paniwnyk, L., & Campbell, R. (2021). Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. International Journal of Environmental Research and Public Health, 18(17), 9153. https://doi.org/10.3390/ijerph18179153
  • Chemat, F., Rombaut, N., Meullemiestre, A., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540 560. https://doi.org/10.1016/j.ultsonch.2016.06.035
  • Chopra, K., & Bishnoi, B. (2007). Antioxidant profile of Spirulina: A blue-green microalga. In M.E. Gershwin & E. Belay (Eds.), Spirulina in human nutrition and health (pp. 101-116). CRC Press. https://doi.org/10.1201/9781420052572.ch5
  • Ekici, L., Simsek, Z., Ozturk, I., Sagdic, O., & Yetim, H. (2014). Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Analytical Methods, 7, 1328-1336. https://doi.org/10.1007/s12161-013-9753-y
  • Elbatreek, M.H., Mahdi, I., Ouchari, W., Mahmoud, M.F., & Sobeh, M. (2023). Current advances on the therapeutic potential of pinocembrin: an updated review. Biomedicine & Pharmacotherapy, 157, 114032. https://doi.org/10.1016/j.biopha.2022.114032
  • Gabr, G.A., El-Sayed, S.M., & Hikal, M.S. (2020). Antioxidant activities of phycocyanin: A bioactive compound from Spirulina platensis. Journal of Pharmaceutical Research International, 32(2), 73-85. https://doi.org/10.9734/jpri/2020/v32i230407
  • Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486. https://doi.org/10.1007/s10811-012-9804-6
  • Goswami, M.J., Dutta, U., & Kakati, D. (2024). Ultrasound-Assisted Extraction for Food, Pharmacy, and Biotech Industries. In Bioactive Extraction and Application in Food and Nutraceutical Industries (pp. 103-128). Springer. https://doi.org/10.1007/978-1-0716-3601-5_5
  • Gouda, M.K.G., Kavitha, M.D., & Sarada, R. (2015). Antihyperglycemic, antioxidant and antimicrobial activities of the butanol extract from Spirulina platensis. Journal of Food Biochemistry, 39, 594-602. https://doi.org/10.1111/jfbc.12164
  • Guldas, M., Kucuk, M., & Yilmaz, Y. (2020). Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Food Science and Technology, 41 (3), 615-625. https://doi.org/10.1590/fst.23920
  • Hajimahmoodi, M., Faramarzi, M.A., Mohammadi, N., Soltani, N., Oveisi, M.R., & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. Journal of Applied Phycology, 22, 43 50. https://doi.org/10.1007/s10811-009-9424-y
  • Haminiuk, C.W., Maciel, G.M., & Gularte, M.A. (2012). Phenolic compounds in fruits–an overview. International Journal of Food Science & Technology, 47(10), 2023-2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x
  • Han, D.-G., Jeong, H.-J., & Lim, H.-Y. (2021). Investigation of the factors responsible for the poor oral bioavailability of acacetin in rats: physicochemical and biopharmaceutical aspects. Pharmaceutics, 13(2), 175. https://doi.org/10.3390/pharmaceutics13020175
  • Honda, S., Abe, K., & Yamada, Y. (2019). Stability of polyphenols under alkaline conditions and the formation of a xanthine oxidase inhibitor from gallic acid in a solution at pH 7.4. Food Science and Technology Research, 25(1), 123-129. https://doi.org/10.3136/fstr.25.123
  • Li, Y., Huang, W., & Zhang, Z. (2020). Extraction of phycocyanin—A natural blue colorant from dried Spirulina biomass: Influence of processing parameters and extraction techniques. Journal of Food Science, 85(3), 727-735. https://doi.org/10.1111/1750-3841.14842
  • Miranda, M.S., Cintra, R.G., Barros, S.B.M., & Mancini-Filho, J. (1998). Antioxidant activity of microalgae Spirulina maxima. Brazilian Journal of Medicinal and Biological Research, 31, 1075-1079. https://doi.org/10.1590/S0100-879X1998000800007
  • Nuhu, A.A. (2013). Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. Journal of Marine Biology, 1-8. https://doi.org/10.1155/2013/325636
  • Ozawa, H., Miyazawa, T., & Miyazawa, T. (2021). Effects of dietary food components on cognitive functions in older adults. Nutrients, 13(8), 2804. https://doi.org/10.3390/nu13082804
  • Santos, T.D., Bastos de Freitas, B.C., Moreira, J.B., Zanfonato, K., & Costa, J.A.V. (2016). Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innovative Food Science and Emerging Technologies, 37, 216-220. https://doi.org/10.1016/j.ifset.2016.07.016
  • Shalaby, E.A., & Shanab, S.M.M. (2013). Antiradical and antioxidant activities of different Spirulina platensis extracts against DPPH and ABTS radical assays. Journal of Marine Biology & Oceanography, 2(1), 1-8. https://doi.org/10.4172/2324-8661.1000105
  • Shalaby, E.A., Shanab, S.M.M., & Singh, V. (2010). Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. Journal of Medicinal Plants Research, 4, 2655-2632. https://doi.org/10.5897/JMPR09.300
  • Shen, X., Wang, T., & Zhao, J. (2022). Preparation, in vitro and in vivo evaluation of pinocembrin-loaded TPGS modified liposomes with enhanced bioavailability and antihyperglycemic activity. Drug Development and Industrial Pharmacy, 48(11), 623-634. https://doi.org/10.1080/03639045.2022.2151616
  • Singh, S., Khan, H., & Shukla, M. (2020). Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food and Chemical Toxicology, 145, 111708. https://doi.org/10.1016/j.fct.2020.111708
  • Soong, Y.-Y., & Barlow, P.J. (2004). Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88(3), 411-417. https://doi.org/10.1016/j.foodchem.2004.02.003
  • Usharani, G., Srinivasan, G., Sivasakthi, S., & Saranraj, P. (2015). Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Advances in Biological Research, 9(5), 292-298. https://doi.org/10.5829/idosi.abr.2015.9.5.9610
  • Vali Aftari, R., Mahdavi, S., & Jafari, S. (2015). The optimized concentration and purity of Spirulina platensis C-phycocyanin: A comparative study on microwave-assisted and ultrasound-assisted extraction methods. Journal of Food Processing and Preservation, 39(6), 3080-3091. https://doi.org/10.1111/jfpp.12573
  • Wang, F., Yu, X., Cui, Y., Xu, L., Huo, S., Ding, Z., Hu, Q., Xie, W., Xiao, H., Zhang, D. (2023). Efficient extraction of phycobiliproteins from dry biomass of Spirulina platensis using sodium chloride as extraction enhancer. Food Chemistry, 406, 135005. https://doi.org/10.1016/j.foodchem.2022.135005
  • Wang, Y., Wang, H., Wu, J., Ma, M., Wang, W., Li, Y., Chen, J.J., & Wang, X. (2014). Determination of phenolics in water and Arthrospira (Spirulina) platensis by concentrated sulfuric acid and ultrasound-assisted surfactant-enhanced emulsification microextraction and high-performance liquid chromatography. Analytical Letters, 47(7), 1242-1260. https://doi.org/10.1080/00032719.2013.865208
There are 30 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section Research Article
Authors

Safa Karaman 0000-0002-1865-661X

Göktürk Öztürk 0000-0001-8749-803X

Submission Date September 21, 2024
Acceptance Date May 10, 2025
Early Pub Date September 1, 2025
Publication Date December 5, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Karaman, S., & Öztürk, G. (2025). Ultrasound-assisted extraction of phenolics from Spirulina platensis by different solvents: An optimization study based on simplex lattice mixture design. International Journal of Secondary Metabolite, 12(4), 772-780. https://doi.org/10.21448/ijsm.1554137
International Journal of Secondary Metabolite

e-ISSN: 2148-6905